IOWA STATE UNIVERSITY Digital Repository

Retrospective Theses and Dissertations

Iowa State University Capstones, Theses and Dissertations

1992

Ligand and metal effects on the heats of protonation of organometallic compounds

Mary Katherine Rottink *Iowa State University*

Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the <u>Analytical Chemistry Commons</u>, <u>Inorganic Chemistry Commons</u>, and the <u>Physical Chemistry Commons</u>

Recommended Citation

Rottink, Mary Katherine, "Ligand and metal effects on the heats of protonation of organometallic compounds " (1992). *Retrospective Theses and Dissertations*. 10150. https://lib.dr.iastate.edu/rtd/10150

This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact digrep@iastate.edu.

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

U·M·I

University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 313/761-4700 800/521-0600

.....

Order Number 9311530

Ligand and metal effects on the heats of protonation of organometallic compounds

Rottink, Mary Katherine, Ph.D.

Iowa State University, 1992

,

Ligand and metal effects on the heats of protonation of organometallic compounds

by

Mary Katherine Rottink

A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department: Chemistry

Department: Chemistry Major: Inorganic Chemistry

Approved:

Signature was redacted for privacy.

In Charge of Major Work

Signature was redacted for privacy.

For the Major Department

Signature was redacted for privacy.

For the Graduate College

Iowa State University Ames, Iowa

1992

DEDICATION

To my parents and grandparents

.

... .

.

TABLE OF CONTENTS	TABLE	OF	CONTENTS
-------------------	-------	----	----------

	Page
GENERAL INTRODUCTION	1
PAPER I. LIGAND AND METAL EFFECTS ON THE ENTHALPIES OF PROTONATION OF Cp'Os(PR3)(PR'3)X COMPLEXES (M = Ru or Os)	29
ABSTRACT	30
INTRODUCTION	32
EXPERIMENTAL SECTION	34
RESULTS	48
DISCUSSION	53
CONCLUSIONS	65
REFERENCES	67
PAPER II. LIGAND EFFECTS ON HEATS OF PROTONATION OF MULTIHYDRIDO-TRANSITION METAL	N
COMPLEXES OF OSMIUM AND IRIDIUM	72
ABSTRACT	73
INTRODUCTION	74
EXPERIMENTAL SECTION	78
RESULTS	81
DISCUSSION	87
CONCLUSIONS	93
REFERENCES	94

iii

.

PAPER III.	CALORIMETRIC STUDIES OF THE HEATS OF	
	PROTONATION OF THE DANGLING	
	PHOSPHORUS IN η^1 -Ph ₂ PCH ₂ PPh ₂ COMPLEXES	
	OF CHROMIUM, MOLYBDENUM, AND	
	TUNGSTEN	9 8
ABSTRACT		99
INTRODUCTION		100
EXPERIMENTAL :	SECTION	104
RESULTS		109
DISCUSSION		113
CONCLUSIONS		118
REFERENCES		119
SUMMARY		121
GENERAL REFER	ENCES	122

•

.

GENERAL INTRODUCTION

Preface

This dissertation contains three papers describing the research I performed at Iowa State University. Preceding these papers is a general introduction, which is a literature review of quantitative organic acid-base strengths as determined by calorimetry. In the introduction as well as the papers, the literature citations, tables, figures and schemes pertain only to the papers in which they appear. After the final paper is a general summary and the references cited in the general introduction.

Introduction

Quantitative values for acid-base strengths of organic compounds have been essential to the development of synthetic organic chemistry.¹ For example, by knowing the relative strengths of acid-base pairs one can control chemical processes to give the desired product(s).² Some of the first pK_a values measured were of amines, carboxylic acids and phenols in aqueous solutions.³ However, the leveling effect and the solvation of the compounds in water can mask the overall strengths and trends of the acids and bases. Measurement of the acid-base strengths in the gas phase eliminates solvation and leveling effects; however, few organic reactions are run in the gas phase. Dimethylsulfoxide (DMSO) has, therefore, been chosen as the solvent in which to measure the pK_a values of a large number of organic compounds due to the fact that the trends in DMSO are usually very similar to those found in the gas phase.

1

Beginning in the 1960's Arnett and coworkers used calorimetry as a method to quantify the strengths of weak organic bases by measuring the heats of protonation (ΔH_i) of the bases (B) with neat fluorosulfonic acid (FSO₃H) at 25.0 °C (eq 1).⁴ The heats of protonation (ΔH_i , which can also be classified as the heats of ionization) reported below have been corrected for the heat of dissolution of the base in CCl₄, since it is not possible to measure the heat of dissolution of a base in FSO₃H. Both extremely weak and strong bases can be completely and quantitatively protonated in neat FSO₃H; thus, the basicities (ΔH_i) of a large number of bases could be measured and compared in the same solvent and on the same scale using this method.

$$:B + FSO_{3}H \xrightarrow{25.0 \circ C} HB^{+}FSO_{3}; \Delta H_{i}$$
(1)

Calorimetry has also been used to determine the heats of deprotonation (ΔH_D) of organic acids (HA) with 0.1 M K+CH₃S(O)CH₂-(K+DMSYL-) in DMSO at 25.0 °C (eq 2).⁵ Since K+DMSYL⁻ is a strong base in DMSO, it quickly

HA + K⁺DMSYL⁻
$$\xrightarrow{25.0 \circ C}$$
 K⁺A⁻ + DMSO; ΔH_D (2)

and quantitatively deprotonates even weak acids. In order to convert these heats of deprotonation (ΔH_D) to heats of ionization (ΔH_i) in DMSO, the heat of deprotonation ($\Delta H_D = -48.0$ kcal/mol) of FSO₃H in DMSO by 0.1 M K+DMSYL-(eq 3a) is required. Since FSO₃H is completely dissociated in DSMO (eq 3b), this yields the heat of autoprotolysis (ΔH_{aut}). By subtracting eq 3b from eq 2, the heats of deprotonation (ΔH_D) of acids (HA) by K+DMSYL⁻ (eq 2) can be converted to the heats of ionization (ΔH_i) in DMSO (eq 4) using eq 5.

$$FSO_{3}H + K^{+}DMSYL^{-} \xrightarrow{25.0 \circ C} K^{+}FSO_{3}^{-} + DMSO$$
(3a)

$$FSO_{3}(DMSO)H^{+} + K^{+}(DMSYL^{-}) \xrightarrow{25.0 \circ C} 2 DMSO + K^{+}FSO_{3}^{-} \qquad (3b)$$

HA + DMSO
$$\frac{25.0 \text{ °C}}{\text{DMSO}} \text{ A}^{-}$$
 + (DMSO)H⁺; ΔH_{i} (4)

$$\Delta H_{i} = \Delta H_{D} + 48.0 \text{ kcal/mol}$$
(5)

In this review the quantitative acid-base strenths of organic compounds as measured by calorimetry will be presented.

HEATS OF DEPROTONATION

Compiled in Tables I - XI are the heats of deprotonation (ΔH_i) of approximately 100 organic acids by FSO₃⁻ (eq 4), which were calculated by Arnett et al., from the ΔH_D of the acids using eq 5. These acids listed in Tables I - XI are listed from top to bottom in order of decreasing acidity. The errors, which are not listed in Tables I - XI, for the heats of deprotonation (ΔH_i) are generally 0.9 - 1.1 kcal/mol. In many cases there is a linear correlation between the heats of deprotonation and the aqueous pK_a values; thus, all pK_a values listed in this introduction are estimated from these ΔH_i values. However, in some families of compounds (i. e., HX, RSH, ROR', and RCO₂H) the correlation between the heats of deprotonation (ΔH_i) and the aqueous pK_a values is extremely poor and the pK_a values are not estimated.

Hydrogen Halides

The heats of deprotonation (ΔH_i) of the hydrogen halides (HX) in Table I show that the acidity increases in the order: HF << HCl \approx HBr < HI. Since HF is known to hydrogen bond, its low acidity is explained by F-....H-F interactions. A similar trend is observed for the hydrogen halides in the gas phase.

······································	
HYDROGEN HALIDES	ΔH _i , kcal/mol
hydrogen iodide	7.0
hydrogen bromide	14.0
hydrogen chloride	13.0
hydrogen fluoride	38.8

Table I. Heats of deprotonation $(\Delta H_i)^a$ of hydrogen halides in DMSO at 25.0 °C

^aReference 5a.

Carboxylic Acids

The acidities (ΔH_i) of the substituted benzoic acids (RCO₂H) in Table II appear to increase a total of 1.0 kcal/mol; however, these heats of deprotonation are the same within experimental error.

Table II. Heats of deprotonation $(\Delta H_i)^a$ of substituted benzoic acids in DMSO at 25.0 °C

SUBSTITUTED BENZOIC ACIDS	ΔH _i , kcal/mol	
4-chlorobenzoic acid	13.4	
benzoic acid	13.9	
4-methoxybenzoic acid	14.4	
^a References 5b.		_

Phenols

The acidities (ΔH_i) of phenol (PhOH) and its derivatives listed in Table III range from 25.4 kcal/mol (pK_a \approx 19.4) for 4-cresol to 15.1 kcal/mol (pK_a \approx 12.1) for 4-nitrophenol. Comparing the substituents in the *para* position the acidities of the alcohols increase in the order: 4-cresol (pK_a \approx 19.4) \approx 4-tbutylphenol < phenol < 4-chlorophenol \approx 4-fluorophenol < 4-cyanophenol < 4nitrophenol (pK_a \approx 12.1). Thus, as the electron withdrawing ability of the substituent in the *para* position increases, the acidity of the alcohol increases.

Amines

والمتعارية والمراجع والمراجع والمستعد والم

Nitro (-NO₂) groups are strong electron withdrawing groups; the acidities (ΔH_i) of the diphenylamines (Ph₂NH) in Table IV increase by 10.7 kcal/mol (7.2 pK_a units) in the order: diphenylamine (pK_a ≈ 24.2) < (2niţrophenyl)phenylamine < (4-nitrophenyl)phenylamine (pK_a ≈ 16.6).

<u> 20.0 °C</u>		
SUBSTITUTED PHENOLS	ΔH _i , kcal/mol	_
4-nitrophenol	15.1	
4-cyanophenol	18.1	
2-chlorophenol	19.2	
3-chlorophenol	20.9	
4-fluorophenol	21.0	
3-fluorophenol	21.3	
2,6-di-t-butylphenol	21.8	
4-chlorophenol	22.2	
2-cresol	23.1	
phenol	23.7	
3-cresol	23.8	
4-t-butylphenol	24.9	
4-cresol	25.4	

Table III. Heats of deprotonation $(\Delta H_i)^{a,b}$ of substituted phenols in DMSO at 25.0 °C

^aReference 5b. ^bpK_a = $0.71\Delta H_i + 1.36$.

Table IV. Heats of deprotonation $(\Delta H_i)^{a,b}$ of substituted diphenylamines in DMSO at 25.0 °C

SUBSTITUTED DIPHENYLAMINES	ΔH_i , kcal/mol	
(4-nitrophenyl)phenylamine	21.4	
(2-nitrophenyl)phenylamine	23.5	
diphenylamine	32.1	

aReference 5b. $^{b}pK_{a} = 0.71 \Delta H_{i} + 1.36$

By replacing one of the phenyl groups in diphenylamine (Ph₂NH) with a hydrogen to give aniline (PhNH₂), the acidity (Δ H_i) is decreased by 8.8 kcal/mol (7.6 kcal/mol). Thus, a phenyl group is more electron withdrawing than a hydrogen, which agrees with the Taft σ^* parameters.^{1a} The acidity of

Table V.	Heats of deprotonation $(\Delta H_i)^{a,b}$ of substituted anilines an	nd
imidazole i	n DMSO at 25.0 °C	

SUBSTITUTED ANILINES	ΔH _i , kcal/mol
imidazole	24.9
4-chloro-2-nitroaniline	25.8
2,3,5,6-tetrachloroaniline	28.7
3-chloroaniline	37.0
aniline	40.9

^aReference 5b. ^bpK_a = $0.71\Delta H_i + 1.36$.

the aniline complexes increases in the order: aniline $(pK_a \approx 30.4) < 3$ chloroaniline < 2,3,5,6-tetrachloroaniline < 4-chloro-2-nitroaniline < imidazole $(pK_a \approx 19.0).$

Hydrocarbons

The acidities (ΔH_i) of hydrocarbons range from 23.6 kcal/mol (pK_a \approx 7.9) for 9-cyanofluorene to 42.0 kcal/mol (pK_a \approx 29.9) for phenylacetylene. As the electon withdrawing ability of the groups on fluorene (Scheme 1) increase, the acidities (ΔH_i) of the complexes increase in the order: fluorene (pK_a \approx 21.4) < 9-phenylfluorene < 9-cyanofluorene (pK_a \approx 7.9). That triphenylmethane is 2.8 kcal/mol (2.5 pK_a units) more acidic than diphenylmethane is supported by the greater electon withdrawing ability of the phenyl vs. the hydrogen. The acidities (ΔH_i) of the hydrogen on the methylene carbon of the five membered ring (Scheme 1) increase in the order: 2,3-benzofluorene (pK_a \approx 23.3) < fluorene \approx 4,5-methylenephenanthrene < indene < cyclopentadiene (pK_a \approx 17). Scheme I

fluorene

cyclopentadiene

4,5-methylenephenanthrene

Table VI. Heats of deprotonation (∆H _i) ^{a,b} of hydrocarbons in DMSO at 25.0 °C
HYDROCARBONS	ΔH_i , kcal/mol
9-cyanofluorene	10.5
cyclopentadiene	23.6
9-phenylfluorene	23.9
indene	25.2
4,5-methylenephenanthrene	29.7
fluorene	29.8
1,1,3-triphenylpropene	30.6
2,3-benzofluorene	33.4
t-butylacetylene	33.4
biphenylyldiphenylmethane	37.7
triphenylmethane	38.6
xanthene	39.6
1,4-pentadiene	40.0
diphenylmethane	41.4
phenylacetylene	42.0

^aReference 5b. ^bpK_a = $0.70\Delta H_i + 0.53$.

. .

8

Nitriles

The acidities (ΔH_i) of the nitrile compounds in Table VII increase in the order: acetonitrile (CH₃CN) (pK_a ≈ 29.0) < phenylacetonitrile (PhCH₂CN) < (3chlorophenyl)phenylacetonitrile < diphenylacetonitrile (Ph₂CHCN) < malonitrile (CH₂(CN)₂) < 9-cyanofluorene (pK_a ≈ 7.9). Thus, as the number and/or strength of electron withdrawing groups increase the acidities (ΔH_i) of compounds increase.

Table VII. Heats of deprotonation $(\Delta H_i)^{a,b}$ of nitrile compounds in DMSO at 25.0 °C

NITRILES	ΔH_i , kcal/mol
9-cyanofluorene	10.5
malonitrile	15.5
diphenylacetonitrile	22.9
(3-chlorophenyl)phenylacetonitrile	26.5
phenylacetonitrile	28.9
acetonitrile	40.6

^aReference 5b. ^bpK_a = $0.70\Delta H_i + 0.53$.

Nitro Complexes

Nitro (-NO₂) groups are more electron withdrawing than nitrile (-CN) groups as supported by nitromethane (CH₃NO₂, pK_a \approx 18.9) being 19.5 kcal/mol (10.1 pK_a units) more acidic than acetonitrile (CH₃CN, pK_a \approx 29.0). The acidity (Δ H_i) of the nitro compounds in Table VIII range from the least acidic compound nitromethane (21.1 kcal/mol, pK_a \approx 18.9) to the most acidic compound 2-nitropropane (13.3 kcal/mol, pK_a \approx 13.1). However, there appears to be no correlation between the length of the alkyl chain and the strength of the acid.

Table VIII.	Heats of deprotonation	(ΔH _i) ^{a,b} of nitro	compounds in	DMSO at
25.0 °C				

NITRO COMPOUNDS	ΔH_i , kcal/mol	
2-nitropropane	13.3	
nitroethane	18.3	
1-nitrobutane	18.8	
1-nitropropane	19.1	
nitrocyclobutane	19.6	
nitromethane	21.1	

^aReference 5b. ^bpK_a = $0.74\Delta H_i + 3.26$.

Ketones

The acidities (ΔH_i) of the ketones $(R_2C=O)$ in Table IX increase as the electron withdrawing abilities of the R groups increase; thus, the acidities (ΔH_i) increase in the order: acetone $(pK_a \approx 27.6) <$ acetophenone < phenylacetone < 2-phenylacetophenone < acetylacetone < benzoylacetone < dibenzoylmethane < dimedone $(pK_a \approx 13.1)$. There appears to be no correlation between the acidities (ΔH_i) of the cyclic ketones and the length of the methylene chain.

Alcohols

Deprotonation of the alcohols in Table X has yielded acidities (ΔH_i) that range from 14.2 kcal/mol for perfluoro-*t*-butyl alcohol to 40.6 kcal/mol for 2,2,5,5-tetramethylpentan-3-ol. That the perfluoro-*t*-butyl alcohol is much more acidic ($\Delta H_i = 24.6$ kcal/mol) than *t*-butyl alcohol is expected, since fluoro groups are strong electron withdrawing groups. In the gas phase, acidities of alcohols increase in the order: methyl alcohol < ethyl alcohol < *i*-propyl

KETONES	ΔH _i , kcal/mol
dimedone	14.1
dibenzoylmethane	14.8
benzoylacetone	15.1
acetylacetone	16.3
2-phenylacetophenone	21.4
phenylacetone	24.6
acetophenone	30.7
acetone	32.9
camphor	38.1
CYCLIC KETONES	
cyclopentanone	32.4
cyclohexanone	32.5
cyclooctanone	33.3
cycloheptanone	34.2
cyclododecanone	34.3

Table IX. Heats of deprotonation $(\Delta H_i)^{a,b}$ of ketones in DMSO at 25.0 °C

^aReference 5b. ^bpK_a = $0.74\Delta H_i + 3.26$.

alcohol < t-butyl alcohol.⁶ However, in solution (i.e., H₂O, DMSO, etc.), it has been determined that the acidities increase in the order: t-butyl alcohol < ipropyl alcohol < ethyl alcohol < methyl alcohol.^{5a} This difference between the gas phase and the solution acidities illustrates the importance of solvation and ion pairing, which can ultimately affect the ordering of acidities in solution. Since an attempted correlation between ΔH_i values and pK_a values is so poor, it is not possible to estimate the pK_a of an alcohol from the heat of protonation (ΔH_i) with any degree of certainty.

ALCOHOLS	ΔH _i , kcal/mol
perfluoro-t-butyl alcohol	14.2 ^b
hexafluoroisopropyl alcohol	21.2 b
ethylene glycol	26.2
triphenylsilanol	26.6
2-propyne-1-ol	27.4
2,2,2-trifluoroethanol	30.3
methanol	32.1
triphenylmethanol	32.6
2-methoxyethanol	34.3
1-heptanol	34.8
allyl alcohol	34.9
benzyl alcohol	35.1
water	35.8
1-propanol	36.4
2-pentanol	36.6
ethanol	36.9
1-butanol	36.9
neopentyl alcohol	37.4
1-adamantanol	38.4
2-propanol	38.5
t-butyl alcohol	38.8
2,2,5,5-tetramethylpentan-3-ol	40.6

Table X. Heats of deprotonation $(\Delta H_i)^a$ of alcohols in DMSO at 25.0 °C

^aReference 5a unless otherwise noted. ^bReference 5b.

Thiols

Thiols (RSH) (Table XI) are more acidic than alcohols (ROH) as illustrated by MeSH being 12.4 kcal/mol more acidic than MeOH, while thiophenol (PhSH) is 11.8 kcal/mol more acidic than phenol (PhOH, $\Delta H_i = 23.7$

kcal/mol). Unlike alchols (ROH), which increase in acidity as the length of the alkyl chain decreases (i. e., *t*-butyl alcohol < *i*-propyl alcohol < ethyl alcohol < methyl alcohol), there is no apparent correlation between the length of the alkyl chain and the acidities (ΔH_i) of the thiols (Table XI). As with the alcohols, it is not possible to estimate the pK_a values for thiols from the ΔH_i values with any degree of certainty.

THIOLS	ΔH _i , kcal/mol
thiophenol	11.9 ^b
triphenylmethanethiol	15.2
hydrogen sulfide	15.6
ethanethiol	18.0
2-propanethiol	19.5
1-butanethiol	19.6 ^b
2,2-dimethylpropanethiol	19.6 ^b
methanethiol	19.7

Table XI. Heats of deprotonation $(\Delta H_i)^a$ of thiols in DMSO at 25.0 °C

^aReference 5b unless otherwise noted. ^b Reference 5a.

HEATS OF PROTONATION OF ORGANIC BASES

In this section the quantitative basicities (ΔH_i) of over 150 organic complexes (Tables XII - XXIV) as measured by calorimetry in which a base (B) is added to neat FSO₃H (eq 2). However, the basicities of the alkyl lithium compounds in Table XXV were determined by adding a known amount of isopropyl alcohol to an excess of base in 90:10 hexanes-ether solvent. Heats of protonation (ΔH_i) of the bases listed in Tables XII - XXV have been corrected for the heat of dissolution and are listed from top to bottom in increasing order of basicity (ΔH_i). Although the errors are not listed in the tables, they are generally \leq 0.4 kcal/mol. Since there is an excellent correlation between the heats of protonation (ΔH_i) of the organic bases in Tables XII - XXIV in FSO₃H and the pK_{BH+} values, the ΔH_i values can be converted to pK_{BH+} (pK_{BH+} = pKa of the base's conjucate acid) values using eq 6. The pK_{BH+} values listed in the text are estimated using eq 6.

$$pK_{BH+} = -0.56 \Delta H_i - 15.8 \tag{6}$$

Amines

Protonation of amines (Table XII) with FSO₃H was the first system studied by Arnett and coworkers using calorimetry. The basicities (ΔH_i) were found to increase, where R = Me or Et, in the order: NH₃ < RNH₂ < R₂NH < R₃N. Thus, as the number of methyl or ethyl groups on the nitrogen atom increase the greater the basicity of the nitrogen atom. However, when R = *n*butyl, the basicities increases in the order: tri-*n*-butylamine < *n*-butylamine \approx di-*n*-butylamine, which suggests that solvation or conformational requirements result in an order different than that found for R = Me or Et. The basicities of trialkylamine (NR₃) complexes increase in the order: NPh₃ (pK_{BH+} \approx -5.1) < NH₃ < N(*n*-Bu)₃ < NMe₃ < NEt₃ (pK_{BH+} \approx +11.8). Except for the basicity of N(*n*-Bu)₃, the NR₃ complexes increase in basicity as the electron donating ability of the alkyl (R) groups increase.

 ΔH_i , kcal/mol AMINES -19.1° triphenylamine pyridine -38.6d 2,6-lutidine -41.3° ammonia -43.3 tri-n-butylamine -45.2° -45.8d quinuclidine *n*-propylamine -46.2 *n*-butylamine -46.2 methylamine -46.3 di-n-butylamine -46.4° ethylamine -46.8 dimethylamine -47.5 diethylamine -47.7 trimethylamine -47.9 di-n-propylamine -48.6 t-butylamine -48.8 triethylamine -49.2° *i*-propylamine -49.3

Table XII. Heats of protonation $(\Delta H_i)^{a,b}$ of amines with FSO₃H at 25.0 °C

^aReference 4c unless otherwise noted. ^bpK_{BH+} = -0.56Δ H_i -15.8. ^cReference 4b. ^dReference 4a.

Solvents

The basicities (ΔH_i) of some common solvents (Table XIII) were found to increase in the order: H₂O (pK_{BH+} \approx -6.6) < EtOH < (CH₃)₂CO < Et₂O< tetrahydrofuran < Me₂SO < pyridine (pK_{BH+} \approx 5.8).

Table XIII. Heats of protonation $(\Delta H_i)^{a,b}$ of some common solvents with FSO₃H at 25.0 °C

SOLVENTS	ΔH _i , kcal/mol
water	-16.5
ethanol	-18.7
acetone	-19.1
diethyl ether	-19.5
tetrahydrofuran	-19.6
dimethyl sulfoxide	-28.6
pyridine	-38.6°
^a Reference 4h unless otherwise noted	$b_{\rm D}K_{\rm PH} = -0.56 \text{AH}; -15.8$ (Reference

^aReference 4b unless otherwise noted. ${}^{\text{b}}\text{pK}_{BH+} = -0.56\Delta H_i - 15.8$. cReference 4a.

Anilines

The basicities (ΔH_i) of aniline complexes (Table XIV) increase from 17.4 kcal/mol (pK_{BH+} \approx -6.1) for 2-bromo-4,6-dinitroaniline to 37.7 kcal/mol (pK_{BH+} \approx 5.3) for *N*,*N*-dimethylaniline. By replacing the hydrogen in the *para* position of aniline (PhNH₂) by other substituents, the basicities (ΔH_i) of the compounds increase in the order: NO₂ (pK_{BH+} \approx 1.6) < aniline < I < Br < Cl \approx Me < F (pK_{BH+} \approx 5.0); however, no correlation between these basicities (ΔH_i) and the Hammett σ values^{1a} is observed. Finally, by substituting both hydrogens on the nitrogen in aniline ($\Delta H_i = -34.0$ kcal/mol) with two electron donating methyl groups to give *N*,*N*-dimethylaniline ($\Delta H_i = -37.7$ kcal/mol), the basicity of the nitrogen atom increases by 3.7 kcal/mol (2.1 pK_a units).

Table XIV. Heats of protonation $(\Delta H_i)^{a,b}$ of the nitrogen in substituted anilines with FSO₃H at 25.0 °C

SUBSTITUTED ANILINES	ΔH _i , kcal/mol
2-bromo-4,6-dinitroaniline	-17.4
2,6-dinitroaniline	-17.9
2,4-dinitroaniline	-21.5
2,6-dichloro-4-nitroaniline	-21.8
2,5-dichloro-4-nitroaniline	-24.1
4-chloro-2-nitroaniline	-25.3
2,4,6-tribromoaniline	-25.3
2-nitroaniline	-26.8
2,4-dichloroaniline	-30.3
4-nitroaniline	-31.1
2-iodoaniline	-32.4
2-chloroaniline	-32.5
2-fluoroaniline	-33.9
aniline	-34.0
3-nitroaniline	-24.0
3-chloroaniline	-34.2
4-iodoaniline	-34.5
4-bromoaniline	-35.2
2-methylaniline	-35.6
4-chloroaniline	-36.9
4-methylaniline	-36.9
4-fluoroaniline	-37.2
N,N-dimethylaniline	-37.7

^aReference 4b. ^bpK_{BH+} = -0.56 Δ H_i - 15.8.

e la supre service a supra a s

Pyridines

The basicities (ΔH_i) of the substituted pyridine compounds in Table XV range from -30.2 kcal/mol (pK_{BH+} \approx 1.1) for 2-bromopyridine to -42.7 kcal/mol (pK_{BH+} \approx 8.1) for 2,4,6-trimethylpyridine. When electron withdrawing groups (i. e., Cl, Br) are present in the pyridine ring, the basicity is less than that of pyridine (ΔH_i = -38.6 kcal/mol). However, when electron donating methyl groups are present, the basicity is greater than that of pyridine.

Table XV. Heats of protonation $(\Delta H_i)^{a,b}$ of substituted pyridines with FSO₃H at 25.0 °C

SUBSTITUTED PYRIDINES	ΔH _i , kcal/mol	
2-bromopyridine	-30.2	
3,5-dichloropyridine	-30.7	
2-chloropyridine	-31.7	
3-bromopyridine	-34.6	
quinoline	-37.0	
pyridine	-38.6	
4-methylpyridine	-39.0	
2,6-dimethylpyridine	-40.7	
2,4,6-trimethylpyridine	-42.7	
•		

aReference 4a. $^{b}pK_{BH+} = -0.56\Delta H_{i} - 15.8$.

Ketones

The heats of protonation (ΔH_i) of the oxygen in various ketones are listed in Table XVI. The basicities (ΔH_i) of cyclic aliphatic ketones increase in the order: cyclobutanone $(pK_{BH+} \approx -7.7) <$ cyclododecanone < cyclodecanone < cyclopentanone < cyclohexanone \approx cycloheptanone $(pK_{BH+} \approx -5.6)$,thus, as the ring strain decreases the basicity (ΔH_i) increases. Cyclododecanone and cyclodecanone are out of order due to conformational requirements.^{4d} In Table XVI the acetophenone derivatives increase in basicity a total of 2.6 kcal/mol (1.4 pK_{BH+} units) in the order: 3-chloroacetophenone (pK_{BH+} \approx -6.6) < 4-chloroacetophenone \approx 2,4,6-trimethylacetophenone < 3-nitroacetophenone < 4-nitroacetophenone \approx acetophenone \approx 3-methylacetophenone (pK_{BH+} \approx -5.2). Although no correlation between Hammett σ_{para}^{1a} and ΔH_i is apparent, the correlation between the ΔH_i values and pK_a values measured in DMSO is excellent.

Derivatives of benzophenone increase in basicity (ΔH_i) by 5.3 kcal/mol (3.0 pK_{BH+} units) in the order: 4,4'-dichlorobenzophenone (pK_{BH+} \approx -7.5) < 4bromobenzophenone < 4-chlorobenzophenone < 4-methylbenzophenone < 4,4'dimethylbenzophenone < 4-methoxybenzophenone (pK_{BH+} \approx -4.5). There is an excellent correlation between the heats of protonation and the pK_a values of these compounds as measured in DMSO.^{4d}

Table XVI. Heats of protonation $(\Delta H_i)^{a,b}$ of the carbonyl of the ketones in FSO₃H at 25.0 °C

KETONES	ΔH_i , kcal/mol
fluorenone	-14.2
cyclobutanone	-14.4
cyclododecanone	-16.0
dibenzosuberone	-16.5
cyclodecanone	-16.9
2-norbornanone	-17.1
cyclopentanone	-17.6
adamantanone	-17.6
1-acetylnaphthalene	-18.0
2-acetylnaphthalene	-18.1
cyclohexanone	-18.2

Table XVI. continued

cycloheptanone	-18.2
dibenzosuberenone	-18.8
2-pentanone	-18.8
acetone	-19.1
anthrone	-19.2
coumarin	-19.6
xanthone	-20.6
4-methyl-3-penten-2-one	-20.8
4-dichloromethyl-4-methylcyclo-hexadienone	-21.3
diphenylcyclopropenone	-23.9
ACETOPHENONES	
3-chloroacetophenone	-16.4
4-chloroacetophenone	-17.1
2,4,6-trimethylacetophenone	-17.2
3-nitroacetophenone	-17.9
4-nitroacetophenone	-18.7
acetophenone	-18.9
3-methylacetophenone	-19.0
BENZOPHENONES	
4,4'-dichlorobenzophenone	-14.9
4-bromobenzophenone	-15.1
4-chlorobenzophenone	-15.6
4-methylbenzophenone	-17.8
4,4'-dimethylbenzophenone	-18.1
4-methoxybenzophenone	-20.2

^aFrom reference 4d. ^bpK_{BH+} = -0.56 Δ H_i - 15.8.

.

. ...

Aldehydes

Fluorosulfonic acid quantitatively protonates the oxygen atom of the aldehydes listed in Table XVII. That the ketones are more basic (ΔH_i) than the analogous aldehyde complexes is illustrated by 4-nitroacetophenone being 5.0 kcal/mol (2.8 pK_{BH+} units) more basic than 4-nitrobenzaldehyde. The basicities (ΔH_i) of the aldehydes in Table XVII increase in the order: 4nitrobenzaldehyde (pK_{BH+} \approx -10.8) < 3-nitrobenzaldehyde < benzaldehyde < 4-*i*propylbenzaldehyde < 4-methylbenzaldehyde < crotonaldehyde (CH₃C(H)=CHCHO, pK_{BH+} \approx -4.9). Thus, relative to benzaldehyde the electron withdrawing -NO₂ group decreases the basicity (ΔH_i) of the oxygen atom, and electron donating alkyl groups increase the basicity of the oxygen atom. Benzoyl chloride (PhC(O)Cl) is 10.1 kcal/mol less basic (ΔH_i) than benzaldehyde (PhC(O)H); thus, Cl is more electron withdrawing than H.

Table XVII. Heats of protonation $(\Delta H_i)^{a,b}$ of the carbonyl oxygen of aldehydes and benzoyl chloride with FSO₃H at 25.0 °C

ALDEHYDES	ΔH _i , kcal/mol
benzoyl chloride	-6.0 ^c
4-nitrobenzaldehyde	-13.7
3-nitrobenzaldehyde	-14.3
benzaldehyde	-16.1
4-i-propylbenzaldehyde	-16.5
4-methylbenzaldehyde	-17.1
crotonaldehyde	-19.5

^aReference 4d unless otherwise noted. ^bpK_{BH+} = $-0.56\Delta H_i$ -15.8. ^cReference 4a.

Esters

Basicities (ΔH_i) of the carbonyl group in the ester derivatives (RCO_2R') listed in Table XVIII increase by 3.5 kcal/mol (1.9 pK_{BH+} units) in the order: ethyl benzoate $(pK_{BH+} \approx -7.7) < diethyl carbonate < ethyl acetate < propylene$ $carbonate <math>(pK_{BH+} \approx -5.8)$. The carbonyl oxygen in ethyl acetate (MeCO₂Et) is 3.0 kcal/mol (1.8 pK_{BH+} units) more basic than that in ethyl benzoate (PhCO₂Et); therefore, the methyl group is more electron donating than the phenyl group.

Table XVIII. Heats of protonation $(\Delta H_i)^{a,b}$ of the carbonyl oxygen in esters with FSO₃H at 25.0 °C

ESTERS	ΔH _i , kcal/mol
ethyl benzoate	-14.5
diethyl carbonate	-16.4°
ethyl acetate	-17.5
propylene carbonate	-17.8°

a Reference 4d unless otherwise noted. ${}^{b}pK_{BH+} = -0.56\Delta H_{i} - 15.8$. CReference 4a.

Sulfur Compounds

The basicities (ΔH_i) of sulfur atoms in the following compounds increase by 14.4 kcal/mol (8.0 pK_{BH+} units) in the order: H₂S (pK_{BH+} \approx -12.8) < Ph₂S < ClCH₂SMe < PhSMe < Me₂S \approx (*n*-Bu)₂S < Et₂S \approx MeSH <

tetrahydrothiophene (pK_{BH+} \approx -4.8).

Table XIX. Heats of protonation $(\Delta H_i)^{a,b}$ of the sulfur atom in thioethers with FSO₃H at 25.0 °C

SULFUR COMPOUNDS	ΔH _i , kcal/mol
hydrogen sulfide	-5.3
diphenyl sulfide	-7.6
chloromethyl methyl sulfide	-11.9
phenyl methyl sulfide	-13.2
dimethyl sulfide	-18.1
di-n-butyl sulfide	-18.5
diethyl sulfide	-19.0
methanethiol	-19.2
tetrahydrothiophene	-19.7

^aReference 4a. ^bpK_{BH+} = $-0.56\Delta H_i - 15.8$.

Sulfur Oxides

Protonation of sulfur oxide complexes (Table XX) with fluorosulfonic acid presumably occurs at the monovalent oxygen (S=O).^{4a} The basicity (ΔH_i) of this oxygen increases in the order: (MeO)₂SO₂ (pK_{BH+} \approx -12.8) < tetramethylene sulfone < (MeO)₂SO < PhS(O)Me < Me₂S(O) < (*n*-Bu)₂S(O) (pK_{BH+} \approx 0.7).

Table XX. Heats of protonation $(\Delta H_i)^{a,b}$ of the monovalent oxygen of sulfur oxides with FSO₃H at 25.0 °C

<u>محمور بر محمد المحمد المحفية المحفية المحفية المحمد المحمد المحمد المحمد والمحمد المحالية المحمد المحمد المحمد ا</u>		_
SULFUR OXIDES	∆H _i , kcal/mol	
dimethylsulfate	-5.3	
tetramethylene sulfone	-11.8	
dimethyl sulfite	-16.0	
phenyl methyl sulfoxide	-25.2	
dimethyl sulfoxide	-28.6	
di-n-butyl sulfoxide	-29.5	

^aReference 4a. ^bpK_{BH+} = $-0.56\Delta H_i - 15.8$.

Phosphines

Addition of the phosphines in Table XXI to FSO₃H results in quantitative protonation of the phosphorus atom; thus, the basicities (ΔH_i) of the phosphine compounds increase in the order: PH₃ (pK_{BH+} \approx -8.0) < PPh₃ < CyPH₂ < Cy₂PH < PMe₃ (pK_{BH+} \approx 9.2).

Table XXI. Heats of protonation $(\Delta H_i)^{a,b}$ of the phosphorus atom of phosphines with FSO₃H at 25.0 °C

PHOSPHINES	∆H _i , kcal/mol
phosphine	-14.0
triphenylphosphine	-28.7°
cyclohexyl phosphine	-30.3
dicyclohexyl phosphine	-32.5
trimethyl phosphine	-44.6
a Poforonao da unloga athomiza notad	bollow - 0 56AU, 158 (Reference

^aReference 4c unless otherwise noted. ^bpK_{BH+} = $-0.56\Delta H_i - 15.8$. ^cReference 4b.

Phosphine Oxides

The oxide compounds in Table XXII are protonated at the monovalent oxygen upon addition to neat FSO₃H. The basicities (Δ H_i) of these complexes increase in the order: Cl₃P=O (pK_{BH+} ≈ -13.1) < Cl₂PhP=O < (EtO)₂ClP=O < Cl₂PhP=O < Ph₃P=O < Me₃P=O < pyridine oxide (pK_{BH+} ≈ 2.9). As in the phosphine compounds (PR₃), increasing the electron donating ability of the groups on the phosphorus results in an increase in the basicity of the compound (i. e., the oxygen atom in Me₃P=O is 9.2 kcal/mol (7.0 pK_{BH+} units) more basic than Ph₃P=O).

Table XXII.	Heats of protonation	(∆H _i)a,b	of phosphine	oxides with	FSO ₃ H at
25.0 °C					

PHOSPHINE OXIDES	ΔH _i , kcal/mol
phosphoroxychloride	-4.9
dichlorophenylphosphine oxide	-10.7
diethyl chlorophosphate	-15.5
triphenylphosphine oxide	-23.0
trimethylphosphine oxide	-32.2
pyridine N-oxide	-33.4

^aReference 4a. ^bpK_{BH+} = $-0.56\Delta H_i - 15.8$.

Amides

It is conceivable that amides (RC(O)NR₂) can protonate at either the oxygen or the nitrogen atom; however, spectroscopic evidence shows that protonation occurs at the oxygen.^{4a} The heats of protonation (Δ H_i) of the amides listed in Table XXIII increase from -27.4 kcal/mol (pK_{BH+} ≈ -0.5) for *N*,*N*-dimethylchloroacetamide to -29.6 kcal/mol (pK_{BH+} ≈ 0.8) for *N*methylformamide. Thus, the substituents on the amide influence the basicity (Δ H_i) only slightly.

Table XXIII. Heats of protonation $(\Delta H_i)^{a,b}$ of the carbonyl oxygen in amides and 1,1,3,3-tetramethylurea with FSO₃H at 25.0 °C

		and the second s
AMIDES	ΔH _i , kcal/mol	
N,N-dimethylchloroacetamide	-27.4	
N,N-dimethylbenzamide	-29.1	
N,N-dimethylformamide	-29.5	
N-methylformamide	-29.6	
1,1,3,3-tetramethylurea	-37.6	<u></u>

^aReference 4a. ^bpK_{BH+} = $-0.56\Delta H_i - 15.8$.

Alcohols and Ethers

The basicities (ΔH_i) of the alcohol and ether compounds listed in Table XXIV increase in the order: H₂O (pK_{BH+} \approx -6.6) < MeOH < Me₂O < EtOH < Et₂O < 1,4-dioxane < 1,2-dimethoxyethane (pK_{BH+} \approx -0.1). Thus, as stronger electron donating groups are placed on the oxygen atom the basicity (ΔH_i) increases.

Table XXIV. Heats of protonation $(\Delta H_i)^{a,b}$ of alcohols and ethers by FSO₃H at 25.0 °C

ALCOHOLS AND ETHERS	∆H _i , kcal/mol	
water	-16.5	
methanol	-17.1	
dimethyl ether	-18.2	
ethanol	-18.7	
diethyl ether	-19.5	
1,4-dioxane	-21.5	
1,2-dimethoxyethane	-28.0	

^aReference 4e unless otherwise noted. ^bpK_a = $-0.56\Delta H_{BH+} - 15.8$. ^cReference 4a.

Alkyl Lithium Complexes

The heats of protonation (ΔH_i) of the alkyl lithium complexes listed in Table XXV are measured with *i*-propanol as the acid in 90:10 hexanes-ether at 25 °C. The basicities increase down the column; however, these basicities cannot be converted to the aqueous pK_a scale nor can they be directly compared with the heats of protonation (ΔH_i) measured for the compounds listed in Tables XII - XXIV. Quantitative comparisons can, however, be made within Table XXV. Table XXV. Heats of protonation $(\Delta H_i)^a$ of alkyl lithium compounds by isopropyl alcohol in 90:10 hexanes-ether at 25.0 °C

ALKYL LITHIUM COMPLEXES	∆H _i , kcal/mol
lithium t-butoxide	-2.1 ^b
lithium pinacolonate	-3.4 ^c
lithium bis(trimethylsilyl)amide (LiHMDS)	-12.1
lithium <i>n</i> -octylamide	-18.9
lithium <i>t</i> -butylamide	-21.2
lithium isopropylamide	-21.0 ^d
lithium cyclohexylamide	-21.5 ^d
lithium diethylamide	-23.4
lithium diisopropylamide	-28.6
lithium isopropylcyclohexylamide	-29.6
lithium 2,2,6,6-tetramethylpiperidide	-30.4
lithium dicyclohexylamide	-31.8
((trimethylsilyl)methyl)lithium	-40.0
methyllithium	-41.6 ^e
phenyllithium	-42.3
<i>n</i> -butyllithium	-50.0
s-butyllithium	-52.8
t-butyllithium	-56.2

^aBasicities were measured by adding a known amount of isopropyl alcohol to an excess of base, Reference 4f.

^bValue is calculated by the difference in the ΔH_i for LiHMDS + *i*-PrOH (-12.0) and LiHMDS + pinacolone (-8.7).

^cValue is calculated by the difference in the ΔH_i for LiHMDS + *i*-PrOH (-12.0) and LiHMDS + *t*-BuOH (-10.0).

^d1 equiv lithium *t*-butoxide was added to the organolithium bases prior to measuring ΔH_i with isopropyl alcohol.

eSolvent was 100% Et₂O to maintain solubility.

_
There is an excellent correlation between the heats of deprotonation (ΔH_i) of organic compounds and the aqueous pK_a values; however, different equations are required for different families of compounds. Using eq 7 the heats of deprotonation (ΔH_i) of phenols, diphenylamines, and anilines can

$$pK_a = 0.71 \Delta H_i + 1.36$$
 (7)

be converted to pK_a values; heats of deprotonation (ΔH_i) of hydrocarbons and nitriles can be converted to pK_a values with eq 8, and the pK_a values of nitro

$$pK_{a} = 0.70 \Delta H_{i} + 0.53$$
 (8)

compounds and ketones can be estimated using eq 9. In contrast to the organic acids, which require different equations to estimate the aqueous pK_a

$$pK_{a} = 0.74\Delta H_{i} + 3.26 \tag{9}$$

values, there is an excellent correlation between the heats of protonation (ΔH_i) of the organic bases and the aqueous pKa values (eq 10).

- -----

$$pK_{a} = -0.56\Delta H_{i} - 15.8 \tag{10}$$

PAPER I. LIGAND AND METAL EFFECTS ON THE ENTHALPIES OF PROTONATION OF Cp'M(PR₃)(PR'₃)X COMPLEXES (M = Ru or Os)

ABSTRACT

Titration calorimetry has been used to determine the enthalpies of protonation (Δ H_{HM}) of twenty two Cp'M(PR₃)(PR'₃)X complexes (Cp' = η^5 - $C_5H_5(Cp)$ or η^5 - $C_5Me_5(Cp^*)$; M = Ru, Os; PR₃ = PPh₃, PPh₂Me, PPhMe₂, PMe₃, $P(OEt)_3$, dppm, dppe, dppp; X = H, Cl, Br, I) with CF₃SO₃H in 1,2dichloroethane solution at 25.0 °C to give Cp'M(PR₃)(PR'₃)(X)(H)+CF₃SO₃. Systematically changing the ligands and/or the metal in these complexes has yielded ΔH_{HM} values for protonation at the metal that range from -14.1 kcal/mol for CpOs(PPh₃)₂I to -39.2 kcal/mol for CpOs(PPh₂Me)₂H. Metal basicities (ΔH_{HM}) of the CpOs(PPh₃)₂X complexes correlate linearly with the gas phase proton affinities of the X⁻ ligands, both of which increase in the order: I⁻ < Br < Cl⁻ << H⁻. Substitution of a halide ligand with a hydride causes the metal basicity to increase by as much as 23.2 kcal/mol. The basicicities of $CpOs(PPh_3)(PR_3)Br$ complexes increase in the order: $P(OEt)_3 < P(OEt)_3 < P(OE$ PPh₃ < PMe₃. There is a linear correlation between the basicities (ΔH_{HM}) of the $CpOs(PR_3)_2Br$ complexes and the basicities (ΔH_{HP}) of their PR₃ ligands. In a series of complexes, the Cp* ligand increases the basicity of the metal by 5.5-9.0 kcal/mol over that of the corresponding Cp derivative, and Os complexes are 6.0-8.5 kcal/mol more basic than analogous Ru complexes. Basicities of the $CpOs(PR_3)_2Br$ and $CpRu(PR_3)_2H$ complexes are reduced when the protonated product is forced to have the cis, rather than trans, structure by a small-ring chelating diphosphine ligand (dppm). These studies

30

demonstrate that the metal, ligands and geometries of the protonated product all substantially affect the heats of protonation (ΔH_{HM}) of Cp'M(PR₃)(PR'₃)X complexes.

INTRODUCTION

There is currently much interest in quantitative relationships between properties of ligands and their transition metal complexes. Several studies¹ of ligand effects on spectroscopic, electrochemical, and kinetic properties of complexes have been reported. Especially relevant for this present paper are investigations of the acidity of transition metal hydrides.² For example, Norton and coworkers have determined pK_a values of organometallic complexes such as $HMn(CO)_4(PR_3)$,³ $HCo(CO)_3(PR_3)$,⁴ and $CpM(CO)_3H$ $(Cp=\eta^{5-}C_5H_5, M=Cr, Mo, W)$.⁵ Oxidation potentials of transition-metal hydrides have been used to calculate acidities of the corresponding 17ehydride radical cations such as $Cp'M(CO)_2(L)H^{\bullet+}$ ($Cp'=C_5H_5(Cp)$, $C_5Me_5(Cp^*)$; M=Cr, Mo, W; L=PMe_3, PPh_3, P(OMe)_3, PEt_3, CO),⁶ while Morris et al.⁷ have determined pK_a values of $Cp'Ru(P^{\bullet}P)H_2^+$ ($Cp'=Cp, Cp^*$) complexes.

In these laboratories, we have determined the effects of ligand basicities on the basicities of their metal complexes, as measured by the enthalpies of protonation (ΔH_{HM}) with CF₃SO₃H in 1,2-dichloroethane (DCE) solution at 25.0 °C (eq 1).⁸ The basicities of phosphine ligands (PR₃) were measured by

$$ML_{n} + CF_{3}SO_{3}H \qquad \frac{DCE}{25.0 \circ C} \qquad HML_{n}^{+}CF_{3}SO_{3}; \Delta H_{HM} \qquad (1)$$

$$PR_{3} + CF_{3}SO_{3}H \qquad \frac{DCE}{25.0 \circ C} \qquad HPR_{3}^{+}CF_{3}SO_{3}; \Delta H_{HP} \qquad (2)$$

their heats of protonation (ΔH_{HP} , eq 2). Excellent linear correlations are realized between ΔH_{HM} and ΔH_{HP} values for the series of phosphine complexes, CpIr(CO)(PR₃),⁹ Fe(CO)₃(PR₃)₂⁹ and W(CO)₃(PR₃)₃.¹⁰ Similarly, increasing the number of methyl groups in the η^5 -cyclopentadienyl ligand of $(\eta^5-C_5Me_xH_{5-x})$ Ir(COD),¹¹ where COD is 1,5-cyclooctadiene, increases the basicity (ΔH_{HM}) of the metal. In a recent communication¹² we noted that the basicities (ΔH_{HM}) of CpOs(PR₃)₂X (PR₃ = PPh₃, PPh₂Me; X = Cl, Br, I, H) increase with changes in the X ligand in the order: I < Br < Cl << H. The most remarkable finding was that the hydride complexes are up to 23.2 kcal/mol more basic than the corresponding halide complexes. In this paper we expand upon that study to include twenty two Cp'M(PR₃)₂X complexes (eq 3), where the metal and the X, PR₃ and Cp'(Cp'=Cp or Cp*) ligands are systematically varied.

EXPERIMENTAL SECTION

General Procedures

All preparative reactions were carried out under an argon atmosphere using standard Schlenk techniques. The 1.0 M PMe₃ in toluene and neat PMe₃ were purchased and used as received from Aldrich. Hexanes and CH₂Cl₂ were refluxed over CaH₂, then distilled under N₂. Diethyl ether was purified by distillation from Na/benzophenone under N₂; the 1,2dichloroethane solvent (99.8%, HPLC Grade) was purchased from Aldrich and was distilled from P₄O₁₀ under argon immediately prior to use. The CF₃SO₃H was purchased from 3M Co. and purified as previously described.⁸ Ethanol and methanol were dried over the magnesium alkoxide according to Perrin et al.,¹³ while decahydronaphthalene (decalin) was degassed with N₂(g) and then stored over molecular sieves for 12 h before use. Deuterated solvents (CD₂Cl₂ and CDCl₃) were stored over molecular sieves in air. Brockman, activity I, neutral Al₂O₃ was deoxygenated for 18 h at room temperature under high vacuum, deactivated with 5% (w/w) Ar-saturated water and stored under argon.

The ¹H NMR spectra were recorded in CDCl₃ unless otherwise noted using a Nicolet-NT 300 MHz or Varian VXR-300 MHz spectrometer with TMS (δ =0.00 ppm) as the internal standard. T₁ values were determined using the standard inversion recovery sequence 180- τ -90.¹⁴ The ³¹P(¹H) NMR spectra were recorded on a Varian VXR-300 spectrometer in CD₂Cl₂ using 85% phosphoric acid (δ =0.00 ppm) as the external standard. Elemental analyses

were performed by either Galbraith Laboratories, Inc., Knoxville, TN or Desert Analytics, Tuscon, AZ.

Syntheses of CpOs(PPh₃)₂X (X = Cl (1), ¹⁵ Br (2), ¹⁶ I (3), ¹⁵ H (4)¹⁷), CpRu(PMe₃)₂X (X = Cl (14), Br (15), I (16))¹⁸, CpRu(PPh₃)₂H (17)¹⁷, Cp*Ru(PMe₃)₂Cl (18)¹⁹, Cp*Ru(PPh₃)₂H (19)^{7a}, CpRu(P P)H (P P = dppm (20), dppe (21), dppp (22))¹⁷, and CpOs(dppm)Br (12)²⁰ were carried out according to the cited literature procedures. Ligand abbreviations are dppm = Ph₂PCH₂PPh₂, dppe = Ph₂PCH₂CH₂PPh₂, dppp = Ph₂PCH₂CH₂CH₂PPh₂.

Synthesis of CpOs(PMe₃)₂Br (8)

A suspension of CpOs(PPh₃)₂Br (460 mg, 0.54 mmol) and neat PMe₃ (1.0 mL, 9.7 mmol) in 20 mL of decalin was heated to reflux for 12 h. The solution was cooled to room temperature, then placed on an alumina column (1.5 x 30 cm) packed in hexanes. The decalin and excess phosphines were eluted with 150 mL of hexanes. The desired yellow product was eluted with CH₂Cl₂; the solvent was then removed under vacuum. The residue was recrystallized by dissolving it in a minimum of CH₂Cl₂; this solution was layered with a 10-fold excess of hexanes, and the mixture was cooled to -20 °C for 24 h to yield orange crystals of CpOs(PMe₃)₂Br (8) (150 mg, 66%). ¹H NMR (CDCl₃) δ 4.58 (s, 5H, Cp), 1.66 (d, ²J_{PH} = 8.7 Hz, 18H, Me).

Characterization of 4, 7, 9, 10, 13

The following compounds were prepared in a manner similar to that used for 8. Superscripts refer to literature preparations of the complexes by similar routes. CpOs(PPh₂Me)₂Br (5):^{21b,c} 300 mg (0.35 mmol) of CpOs(PPh₃)₂Br and 0.40 mL (2.1 mmol) of PPh₂Me in 20 mL of decalin; reaction time 12 h; yield 84%. ¹H NMR (CDCl₃) δ 7.1-7.3 (m, Ph), 4.51 (s, 5H, Cp), 1.72 (d, ²J_{PH} = 8.1 Hz, 6H, CH₃). Anal. Calcd for C₃₁H₃₁BrOsP₂: C, 50.61; H, 4.25. Found: C, 50.23; H, 4.47.

CpOs(PPhMe₂)₂Br (7):^{21b,c} 200 mg (0.23 mmol) of CpOs(PPh₃)₂Br and 0.20 mL (1.4 mmol) of PPhMe₂ in 20 mL of decalin; reaction time 12 h; yield, 66%. ¹H NMR (CDCl₃) δ 7.3-7.1 (m, Ph), 4.50 (s, 5H, Cp), 1.72 (d, ²J_{PH} = 8.1 Hz, 12H, CH₃).

CpOs(PPh₃)(PMe₃)Br (9):^{21b,c} 200 mg (0.23 mmol) of CpOs(PPh₃)₂Br and 1.0 mL (1.0 mmol) of PMe₃ (1.0 M solution in toluene) in 20 mL of toluene; reaction time 12 h; yield, 54%. ¹H NMR (CDCl₃) δ 7.3-7.1 (m, Ph), 4.47 (s, 5H, Cp), 1.39 (d, ²J_{PH} = 9 Hz, 9H, CH₃). Anal. Calcd for C₂₆H₂₉BrOsP₂: C, 46.37; H, 4.34. Found: C, 46.61; H, 4.36.

CpOs(PMe₃)₂I (10): 236 mg (0.23 mmol) of CpOs(PPh₃)₂I and 5 mL (5.0 mmol) of PMe₃ (1.0 M solution in toluene) in 40 mL of decalin; reaction time 6 h; yield, 72%. ¹H NMR (CDCl₃) δ 4.59 (s, 5H, Cp), 1.72 (virtual t, ²J_{PH} = 8.7 Hz, 18H, CH₃). Anal. Calcd for C₁₁H₂₃IOsP₂: C, 24.92; H, 4.33. Found: C, 25.12; H, 4.57.

CpOs(dppp)Br (13) was prepared from CpOs(PPh₃)₂Br (100 mg, 0.12 mmol) and dppp (50 mg, 0.12 mmol) in a manner exactly like CpOs(dppm)Br;²⁰ yield, 50-80%. ¹H NMR (CDCl₃) δ 7.5-7.1 (m, Ph), 4.58 (s, 5H, Cp), 3.08 (m, 2H, CH₂), 2.72 (m, 2H, CH₂), 2.45 (m, 1H, CH₂), 1.72 (m, 1H, CH₂). Anal. Calcd for C₃₂H₃₁BrOsP₂: C, 51.41; H, 4.18. Found: C, 50.94; H, 4.26.

Synthesis of CpOs(PPh₃)(P(OEt)₃)H (11)

First, CpOs(PPh₃)(P(OEt)₃)Br was prepared from CpOs(PPh₃)₂Br (200 mg, 0.23 mmol) and P(OEt)₃ (164 µL, 0.96 mmol) exactly like CpOs(PPh₃)(P(OMe)₃)Br;²⁰ reaction time, 3 h; yields a yellow oil. ¹H NMR (CDCl₃) δ 7.5-7.3 (m, Ph), 4.60 (s, 5H, Cp), 3.81 (q, ²J_{HH} = 6.9 Hz, 6H, CH₂), 1.06 (t, ²J_{HH} = 6.9 Hz, 9H, CH₃). To the CpOs(PPh₃)(P(OEt)₃)Br oil was added a NaOMe solution, which was prepared by allowing 70 mg (3.0 mmol) of Na to react completely with 20 mL of MeOH. After refluxing the solution for 9 h, the volume was reduced to 3 mL in vacuo. The pale yellow precipitate that formed was filtered, washed (2 x 1 mL of MeOH) and dried in vacuo (50% overall yield). ¹H NMR (CDCl₃) δ 7.4-7.2 (m, Ph), 4.54 (s, 5H, Cp), 3.5 (m, ²J = 50 Hz, 6H, CH₂), 0.87 (t, ²J_{HH} = 8.7 Hz, 9H, CH₃), -15.64 (dd, ²J_{PH} = 31.5 and 27.6 Hz, 1H, Os-H). Anal. Calcd for C₂₉H₃₆O₃OsP₂: C, 50.86; H, 5.30. Found: C, 50.68; H, 5.54.

Synthesis of CpOs(PPh₂Me)₂H (6)

Complex 6 was prepared in a manner similar to that used for 11; 200 mg (0.23 mmol) of CpOs(PPh₂Me)₂Br added to a NaOMe solution prepared by reacting 70 mg (3.0 mmol) with 40 mL of MeOH; reaction time, 3 h; yield, 87%. ¹H NMR (CDCl₃) δ 7.0-7.6 (m, 20H, Ph), 4.42 (s, 5H, Cp), 1.83 (d, ²J_{PH} = 8.1 Hz, 6H, CH₃), -14.62 (t, ²J_{PH} = 29.0 Hz, 1H, Os-H).

Preparation of [CpOs(PPh₃)₂(H)₂]CF₃SO₃(4H+CF₃SO₃)

The complex $CpOs(PPh_3)_2H$ (4) was prepared by reaction of 125 mg (0.15 mmol) of $CpOs(PPh_3)_2Br$ with a NaOMe solution, which was prepared by

reacting 100 mg (4.3 mmol) of Na with 10 mL of MeOH. After refluxing 1.5 h, the off-white precipitate was filtered from the cooled solution and washed with MeOH. This white solid (87 mg) was dissolved in Et₂O and protonated with 1.1 equiv (10.8 μ L, 0.12 mmol) CF₃SO₃H. After stirring 5 min, the off-white precipitate was filtered and rinsed with Et₂O and dried in vacuo (50% overall yield). X-ray quality crystals were formed by dissolving **4H**+**CF₃SO₃**⁻ in a minimal amount of CH₂Cl₂ and layering the solution with a 5-fold volume of hexanes; the resulting mixture was cooled to -20 °C for 4 d. Anal. Calcd for C₄₂H₃₇F₃O₃OsP₂S: C, 54.18; H, 4.01. Found: C, 53.98, H, 3.97.

Protonation Reactions

Compounds 1-22 were protonated for NMR characterization by dissolving ~5 mg of the complex in 0.5 mL of CDCl₃ (or CD₂Cl₂) in an NMR tube under Ar. To the solution was added 1 equiv of CF₃SO₃H by microliter syringe through a rubber septum. Spectroscopic data at room temperature for compounds 1H+-22H+ are listed below.

 $[CpOs(PPh_3)_2(Cl)(H)]CF_3SO_3 (1H+CF_3SO_3-): {}^{1}H NMR (CDCl_3) \delta 7.3 (m, Ph), 5.43 (s, 5H, Cp), -11.66 (t, {}^{2}J_{PH} = 32.4 Hz, 1H, Os-H).$

 $[CpOs(PPh_3)_2(Br)(H)]CF_3SO_3 (2H+CF_3SO_3^{-}): \ ^1H \ NMR \ (CDCl_3) \ \delta \ 7.4 \ (m, Ph), 5.43 \ (s, 5H, Cp), -12.13 \ (t, \ ^2J_{PH} = 34.0 \ Hz, \ 1H, \ Os-H).$

 $[CpOs(PPh_3)_2(I)(H)]CF_3SO_3 (3H+CF_3SO_3^{-}): {}^{1}H NMR (CDCl_3) \delta 7.4 (m, Ph), 5.35 (s, 5H, Cp), -12.74 (t, {}^{2}J_{PH} = 34.7 Hz, 1H, Os-H).$

 $[CpOs(PPh_3)_2(H)_2]CF_3SO_3 (4H+CF_3SO_3): {}^{1}H NMR (CDCl_3) \delta 7.3 (m, Ph),$ 5.06 (s, 5H, Cp), -11.46 (t, ${}^{2}J_{PH} = 29.0 Hz$, 2H, Os-H). $[CpOs(PPh_2Me)_2(Br)(H)]CF_3SO_3 (5H+CF_3SO_3^{-}): {}^{1}H NMR (CD_2Cl_2) \delta 7.4$ (m, Ph), 5.66 (s, 5H, Cp), 1.77 (d, ${}^{2}J_{PH} = 8.7$ Hz, 6H, CH₃), -12.70 (t, ${}^{2}J_{PH} = 33.4$ Hz, 1H, Os-H).

 $[CpOs(PPh_2Me)_2(H)_2]CF_3SO_3 (6H^+ CF_3SO_3^-): {}^{1}H NMR (CD_2Cl_2) \delta 7.3 (m, Ph), 5.14 (s, 5H, Cp), 2.06 (d, {}^{2}J_{PH} = 8.7 Hz, 6H, CH_3), -12.57 (t, {}^{2}J_{PH} = 30.6 Hz, 2H, Os-H).$

 $[CpOs(PPhMe_2)_2(Br)(H)]CF_3SO_3 (7H^+ CF_3SO_3^-): {}^{1}H NMR (CDCl_3) \delta 7.3$ (m, Ph), 5.46 (s, 5H, Cp), 2.14 (d, ${}^{2}J_{PH} = 9$ Hz, 6H, CH₃), 1.76 (d, ${}^{2}J_{PH} = 9$ Hz, 6H, CH₃), -13.78 (t, ${}^{2}J_{PH} = 36.5$ Hz, 1H, Os-H).

 $[CpOs(PMe_3)_2(Br)(H)]CF_3SO_3 (8H^+ CF_3SO_3^-): {}^{1}H NMR (CDCl_3) \delta 5.74 (s, 5H, Cp), 1.95 (d, {}^{2}J_{PH} = 10.5 Hz, 18H, CH_3), -14.34 (t, {}^{2}J_{PH} = 36.2 Hz, 1H, Os-H).$

 $[CpOs(PPh_3)(PMe_3)(Br)(H)]CF_3SO_3 (9H+ CF_3SO_3): ^{1}H NMR (CDCl_3) \delta$ 7.5 (m, Ph), 5.64 (s, 5H, Cp), 1.55 (d, $^{2}J_{PH} = 11.7$ Hz, 9H, CH₃), -13.98 (dd, $^{2}J_{PH} = 32.4$ and 36.9 Hz, 1H, Os-H).

 $[CpOs(PMe_3)_2(I)(H)]CF_3SO_3 (10H^+ CF_3SO_3^-): {}^{1}H NMR (CDCl_3) \delta 5.64 (s, 5H, Cp), 2.02 (virtual t, {}^{2}J_{PH} = 8.4 Hz, 18H, CH_3), -15.33 (t, {}^{2}J_{PH} = 37.3 Hz, 1H, Os-H).$

 $[CpOs(PPh_3)(P(OEt)_3)(H)_2]CF_3SO_3 (11H^+ CF_3SO_3^-): {}^{1}H NMR (CDCl_3) \delta$ 7.3 (m, Ph), 5.34 (s, 5H, Cp), 3.71 (pentet, ${}^{2}J = 7.0 Hz$, 6H, CH₂), 1.06 (t, ${}^{2}J_{HH} =$ 7.0 Hz, 9H, CH₃), -12.26 (t, ${}^{2}J_{PH} = 30.2 Hz$, 2H, Os-H).

[CpOs(dppm)(Br)(H)]CF₃SO₃ (12H⁺ CF₃SO₃⁻): ¹H NMR (CDCl₃) δ 7.6 (m, Ph), 5.45 (s, 5H, Cp), 6.26 (dt, 1H, CH₂), 5.70 (dt, 1H, CH₂), -10.81 (s, 1H, Os-H).

 $[CpOs(dppp)(Br)(H)]CF_3SO_3 (13H^+ CF_3SO_3^-): {}^{1}H NMR (CDCl_3) \delta 7.3 (m, Ph), 5.70 (s, 5H, Cp), 3.30 (dt, J = 6.3, 12.9 Hz, 2H, CH_2), 2.96 (m, 2H, CH_2), 2.22 (br m, 2H, CH_2), -12.49 (t, {}^{2}J_{PH} = 32.7 Hz, 1H, Os-H).$

 $[CpRu(PMe_3)_2(Cl)(H)]CF_3SO_3 (14H^+ CF_3SO_3^-): \ ^1H NMR (CDCl_3) \ \delta \ 5.52$ (s, 5H, Cp), 1.77 (d, $^2J_{PH} = 9.9$ Hz, 18H, CH₃), -9.52 (t, $^2J_{PH} = 30.0$ Hz, 1H, Ru-H).

 $[CpRu(PMe_3)_2(Br)(H)]CF_3SO_3 (15H^+ CF_3SO_3^-): {}^{1}H NMR (CDCl_3) \delta 5.53$ (s, 5H, Cp), 1.88 (d, ${}^{2}J_{PH} = 10.2$ Hz, 18H, CH₃), -9.48 (t, ${}^{2}J_{PH} = 29.4$ Hz, 1H, Ru-H).

 $[CpRu(PMe_3)_2(I)(H)]CF_3SO_3 (16H^+ CF_3SO_3^*): \ ^1H NMR (CDCl_3) \ \delta \ 5.75 \ (s, 5H, Cp), \ 2.00 \ (d, \ ^2J_{PH} = 10.5 \ Hz, \ 18H, \ CH_3), \ -9.60 \ (t, \ ^2J_{PH} = 29.4 \ Hz, \ 1H, \ Ru-H).$

 $[CpRu(PPh_3)_2(H)_2]CF_3SO_3 (17H+CF_3SO_3): {}^{1}H NMR (CD_2Cl_2) \delta 7.3 (m, Ph), 4.91 (s, 5H, Cp), -7.30 (t, {}^{2}J_{PH} = 23.9 Hz, 2H, Ru-H).$

 $[Cp*Ru(PMe_3)_2(Cl)(H)]CF_3SO_3 (18H+ CF_3SO_3): {}^{1}H NMR (CDCl_3) \delta 1.83$ (s, 15H, Cp*), 1.63 (d, ${}^{2}J_{PH} = 9.3 Hz$, 18H, CH₃), -9.91 (t, ${}^{2}J_{PH} = 34.2 Hz$, 1H, Ru-H).

 $[Cp*Ru(PPh_3)_2(H)_2]CF_3SO_3 (19H+CF_3SO_3-): {}^{1}H NMR (CD_2Cl_2) \delta 7.3 (m, Ph), 1.35 (s, 15H, Cp*), -7.29 (t, {}^{2}J_{PH} = 26.5 Hz, 2H, Ru-H).$

 $[CpRu(dppm)(H_2)]CF_3SO_3 (20H+ CF_3SO_3): {}^{1}H NMR (CD_2Cl_2) \delta 7.4 (m, Ph), 5.18 (s, 5H, Cp), 5.35 (m, 1H, CH_2), 4.31 (m, 1H, CH_2), -6.98 (br s, 2H, Ru-(H_2)).$

 $[CpRu(dppe)(H)_2]CF_3SO_3 (21H+ CF_3SO_3-): ^1H NMR (CDCl_3) \delta 7.4 (m, Ph), 5.18 (s, 5H, Cp of trans complex), 4.82 (s, 5H, Cp of cis complex), 2.50 (br s, 2H, CH₂ of trans complex), 2.45 (s, 2H, CH₂ of cis complex), -9.09 (br s, 2H, cis-Ru-(H₂)), -8.49 (t, ²J_{PH} = 28.0 Hz, 2H, trans-Ru-H).$

 $[CpRu(dppp)(H)_2]CF_3SO_3 (22H^+ CF_3SO_3^-): {}^{1}H NMR (CD_2Cl_2) \delta 7.4 (m, Ph), 5.01 (s, 5H, Cp), 2.89 (m, 2H, CH_2), 2.24 (m, 2H, CH_2), 1.90 (m, 2H, CH_2), -8.70 (t, {}^{2}J_{PH} = 25.7 Hz, 2H, Ru-H).$

··· • •····

Calorimetric Titrations

Calorimetric titrations were performed under an argon atmosphere using a Tronac model 458 isoperibol calorimeter as originally described⁸ and then modified.⁹ In general a two minute titration period was used for all complexes except for **3**, which was run using a 3-minute titration. The titration period was preceded and followed by heat capacity calibrations. During the titration period approximately 0.8 mL of a 0.1 M CF₃SO₃H solution (standardized to a precision of ± 0.0002 M) in DCE solvent was added at a constant rate to 50 mL of a 1.7 mM solution of the metal complex (5-10% excess) in DCE.

The heat of dilution (ΔH_{dil}) of the acid in DCE (-0.2 kcal/mol)⁹ was used to correct the reaction enthalpies. The ΔH_{HM} values were obtained using two different standardized acid solutions and are reported as the average of at least four titrations and as many as eight. Errors are reported as the average deviation from the mean.

The combination of CF₃SO₃H and DCE used in these and previous ΔH_{HM} studies was chosen for the following reasons.

Trifluoromethanesulfonic acid is one of the strongest acids known, $H_0 =$ -14.1;²² therefore, it protonates a large number of even weakly basic metal complexes. The CF₃SO₃⁻ anion is weakly coordinating so it has a low tendency to displace other ligands from the protonated product. 1,2-Dichloroethane (DCE) has been chosen as the solvent for these and previous ΔH_{HM} studies, because it is easily purified,⁸ has low volatility (b.p. = 83 °C), is weakly coordinating and is weakly basic so that it is not protonated by CF₃SO₃H. It also dissolves a broad range of neutral and protonated complexes. The low dielectric constant ($\varepsilon = 10.46$)²³ for DCE means that the protonated ionic products occur as ion pairs. It has been estimated that dissociation of these ion pairs, autoprotolysis and dimerization of CF3SO3H contribute little to the measured ΔH_{HM} values.⁸ Solvation effects, which can be substantial in hydrogen bonding solvents.²⁴ are assumed to be very similar for protonation reactions of related complexes in this acid-solvent system. Evidence that solvation and ion-pairing effects are not major contributors come from ΔH_{HP} values for PMe₃ (-31.6 kcal/mol)⁸ and P(cyclohexyl)₃ (-33.2 kcal/mol).⁸ As alkyl phosphines, both would be expected to have similar ΔH_{HP} values. If the protonated phosphine HPR₃⁺ were stabilized by ion-pairing or solvation, one would expect this stabilization to be greater for the smaller HPMe₃+ than HP(cyclohexyl)₃+, which would make PMe₃ more basic than P(cyclohexyl)₃. That P(cyclohexyl)₃ is, in fact, more basic than PMe₃ indicates that solvation and ion-pairing energies for these phosphines are similar in this system. Thus, trends in ΔH_{HM} values for these complexes are likely to be determined by the energetics of protonation rather than ion-pairing or solvation effects. In fact, Abboud, et al.,²⁵ report that "gas-phase like behavior" can prevail in solution chemistry for acid-base reactions if hydrogen bonding is minimized by using saturated hydrocarbons or CH₂Cl₂ as solvents.

Equilibrium Study and AHHM Determination of 6

Due to small amounts of decomposition in the calorimeter that made the results unreliable, the ΔH_{HM} for complex 6 was determined from equilibrium constant (K_{eq}) measurements (eq 4) at different temperatures. An

$$[CpOs(PPh_3)_2(H)_2]^+ + CpOs(PPh_2Me)_2H \xrightarrow{K_{eq}} CpOs(PPh_3)_2H + [CpOs(PPh_2Me)_2(H)_2]^+$$
(4)
4H⁺ 6 4 6H⁺

air-tight 5 mm NMR tube containing 13.1 mg (0.020 mmol) of 6, 18.6 mg (0.020 mmol) of $4H+CF_3SO_3$ and 0.5 mL of CD_2Cl_2 was allowed to equilibrate for 8 h. After 8 h, no changes in the spectrum occurred with time indicating that equilibrium had been achieved. Relative concentrations of the species in solution were determined by integration of the Cp resonances of the reactants and products. Calculation of the K_{eq} was done using equation 5. The K_{eq} values measured at various temperatures were 15.0 °C, 15.4; 20.0 °C, 15.3; 22.5 °C, 15.1; 25.0 °C, 14.6; 27.5 °C, 14.2; 30.0 °C, 13.2; and 35.0 °C, 12.7.

$$K_{eq} = \frac{[CpOs(PPh_3)_2H(4)][CpOs(PPh_2Me)_2(H)_2^+(6H^+)]}{[CpOs(PPh_2Me)_2H(6)][CpOs(PPh_3)(H)_2^+(4H^+)]}$$
(5)

X-ray Diffraction Study of [trans-CpOs(PPh₃)₂(H)₂+][CF₃SO₃-]•CH₂Cl₂ (4H+ CF₃SO₃-)

A colorless crystal of $4H^+CF_3SO_3^-$ was mounted on a glass fiber for data collection at -50 ± 1 °C on an Enraf-Nonius CAD4 diffractometer. The cell constants for the data collection were determined from a list of reflections found by an automated search routine. Data collection and reduction information are given in Table I. Lorentz and polarization corrections were applied. A correction based on a decay in the standard reflections of 3.0% was applied to the data. An absorption correction based on a series of ψ -scans was applied. The agreement factor for the averaging of observed reflections was

1.6% based on F. The triclinic space group $P\overline{1}$ was determined by intensity statistics, and the structure was solved by direct methods.²⁶ Most nonhydrogen atoms were placed directly from the E-map. All remaining nonhydrogen atoms were found in one successive difference-Fourier map. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were of the riding-model type and the isotropic temperature factors were fixed at the accompanying carbon atom values. One molecule of dichloromethane was found per formula unit. The hydride atoms were located at 1.19 and 1.45Å from the Os using a difference-Fourier map. Selected bond distances and angles for 4H⁺ are given in Table II. The ORTEP drawing of the cation 4H⁺ has the hydride atoms placed at 1.68Å (discussed in Results Section) in Figure 1.

[<i>ITUIDS</i> -OPOS(FFII3/2(IT)2]OF 3503 (4H ⁺)	<u></u>
Formula	[OsP ₂ C ₄₁ H ₃₂]+[SO ₃ CF ₃]- CH ₂ Cl ₂
Space Group	PĪ
a, Å	11.346(2)
b, Å	13.061(2)
c, Å	14.108(2)
α, deg	80.24(2)
β, deg	85.88(2)
γ, deg	75.11(2)
V, Å ³	1990.3(7)
Z	2
d _{calc} , g/cm ³	1.69
Crystal size, mm	0.45 x 0.15 x 0.15
$\mu(MoK_{\alpha}), cm^{-1}$	37.2
Data collection instrument	Enraf-Nonius, CAD4

Table I. Crystal and Data Collection Parameters for

45

Table I. continued

.

•

Radiation (monochromated in	_			
incident beam)	$M_{\alpha}(\lambda=0.71073\text{\AA})$			
Orientation reflections,				
number, range (20)	25, 17.4 < θ < 32.0			
Temperature, °C.	-50(1)			
Scan method	θ-2θ			
Data col. range, 20, deg	4.0-50.0			
No. data collected:	7340			
No. unique data, total:	6672			
with $F_{0}^{2} > 3.0\sigma(F_{0}^{2})$:	5811			
Number of parameters refined	504			
Trans. factors, max., min. (y-scans)	0.994, 0.875			
Ra	0.028			
R ^b _w	0.036			
Quality-of-fit indicator ^c	1.12			
Largest shift/esd, final cycle	0.01			
Largest peak, e/Å ³	0.93(9)			
$\mathbf{a}\mathbf{R} = \Sigma \mathbf{F}_{0} - \mathbf{F}_{c} / \Sigma \mathbf{F}_{0} $				
${}^{b}R_{w} = [\Sigma w(F_{o} - F_{c})^{2}/\Sigma w F_{o} ^{2}]^{1/2}; w = 1/\sigma^{2}(F_{o})$				
^c Quality-of-fit = $[\Sigma w(F_0 - F_c)^2 / (N_{obs} - N_{parameters})]^{1/2}$				

funding obop(I	<u> </u>					
Distances (Å)						
Os-P(1)	2.310(1)	Os-C(3)	2.230(5)	C(3)-C(4)	1.425(8)	
Os-P(2)	2.310(1)	Os-C(4)	2.210(5)	C(4)-C(5)	1.418(7)	
Os-Cp(cent) ^b	1.89	Os-C(5)	2.226(5)	C(5)-C(1)	1.398(7)	
Os-C(1)	2.260(5)	C(1)-C(2)	1.408(7)			
Os-C(2)	2.267(5)	C(2)-C(3)	1.411(7)			
Bond Angles (deg)						
P(1)-Os-P(2)	105.'	71(4)	P(2)-Os-Hb	77(2)		
P(1)-Os-H _a	66(2))	H _a -Os-H _b	121(3)	
P(1)-Os-Hb	71(2))	P(1)-Os-Cp(cer	nt) ^b 127		
P(2)-Os-H _a	78(2))	P(2)-Os-Cp(cer	nt) ^b 127		
^a Numbers in parentheses are estimated standard deviations in the least						

Table II. Selected Bond Distances $(Å)^a$ and Angles $(deg)^a$ for $[trans-CpOs(PPh_3)_2(H)_2]^+ (4H^+)$

^aNumbers in parentheses are estimated standard deviations in the l significant digits. ^bcent = centroid of Cp ring.

.....

Figure 1. Molecular structure of trans-CpOs(PPh₃)₂(H)₂+ (4H+).

RESULTS

Characterization of Complexes and Their Protonated Products

Complexes 1-22 have the three-legged piano stool geometry (eq 3); X-ray structural studies of 1^{27} and 14^{28} show that there are approximately 90° angles between the PR₃ and X ligands. The complexes are slightly air-sensitive in the solid state, except for the osmium halides which are air-stable.

Quantitative formation of the four-legged piano-stool complexes 1H+-22H+ occurs upon addition of 1 equiv of CF₃SO₃H to the neutral complexes 1-22 (eq 3) as evidenced by ¹H NMR spectroscopy. These protonated complexes are airsensitive in solution; complex 4H+CF₃SO₃⁻ was isolated as an off-white, airstable solid. The ¹H NMR spectra of these complexes are the same as those of 2H+PF₆^{-,21a} 4H+BPh₄^{-,15} 8H+PF₆^{-,21a} 14H+PF₆^{-,28} 17H+BPh₄^{-,29} 18H+PF₆^{-,19} 19H+BF₄^{-,7b} 20H+-22H+PF₆^{- 30}, which have previously been isolated and characterized.

The trans-configuration has previously been assigned to the protonated halide compounds $2H^{+}$, $^{21a} 8H^{+}$, 21a and $14H^{+28}$ based on the triplet ($^{2}J_{PH} = 30.0$ -36.2 Hz) for the hydride ligand in their ¹H NMR spectra. The trans structure is also assigned to the halide complexes $1H^{+}$, $3H^{+}$, $5H^{+}$, $7H^{+}$, $9H^{+}$, $10H^{+}$, $13H^{+}$ - $16H^{+}$ and $18H^{+}$, since the hydride resonances occur as triplets between -7.29 ($17H^{+}$) and -15.33 ($10H^{+}$) ppm with $^{2}J_{PH}$ coupling constants between 23.9 and 37.3 Hz. Although a doublet of doublets is expected for

CpOs(PPh₃)[P(OEt)₃](H)₂+ (11H+), a triplet with a ${}^{2}J_{PH}$ coupling constant of 30.2 Hz is observed, which is similar to ${}^{2}J_{PH}$ values of the above complexes; apparently the ${}^{2}J_{PH}$ coupling constants for the phosphine and the phosphite

ligands are similar. The complex CpOs(PPh₃)(PMe₃)(Br)(H)⁺ (9H⁺) does exhibit a doublet of doublets for the hydride resonance (-13.98 ppm, $^{2}J_{PH} = 32.4$ and 26.9 Hz).

The dihydride complexes Cp'Ru(PPh₃)₂(H)₂+ (Cp'=Cp, 17H+ and Cp*, **19H+**) were assigned the *trans* structure by Chinn and Heinekey³¹ based on the two distinct ¹H NMR hydride ($^{2}J_{PH} = 29.4$ and 30.7 Hz) signals observed for $CpRu[(R)-(+)-Ph_2PCH_2CH(CH_3)PPh_2](H)_2^+$, which rules out the *cis* isomer. The structures of 4H⁺ and 6H⁺ are also assigned the *trans* geometry since their ²JPH values (29.0 and 30.6 Hz) are very similar to those in the Ru complexes. The structure of 4H⁺ (Figure 1) was found to be a regular 4-legged piano stool molecule of trans geometry with a P1-Os-P2 bond angle of 105.71° (4). The Os-P bond lengths are both 2.310(1) Å, which is within the normal Os-P bond length range.³² The structure solution yielded Os-H bond distances (1.19 and 1.45Å) that are much shorter than the average Os-H bond length (1.66(2)Å) in H₄Os(PPhMe₂)₃, which was determined by neutron diffraction.³² The short Os-H distances are almost certainly not real since most of the electron density located by X-ray diffraction is between the Os and hydride atoms, rather than around the hydrogen nucleus. The Ha-Os-Hb bond angle is 121°, which is somewhat smaller than the 138° Ha-Re-Hb bond angle for the isostructural CpRe(PPh₃)₂H₂ complex.³³

Due to the small bite angle of the dppm ligand, $CpRu(dppm)(H_2)^+$ (20H⁺) is forced to have *cis* phosphorus atoms and an η^2 -(H₂) ligand. This geometry has been previously established³⁰ by J_{HD} coupling constants for 20H⁺; 21H⁺ exists as a 1:2 mixture of *cis*-(η^2 -(H)₂) and *trans*-(H)₂ isomers, while complex 22H⁺ has exclusively the *trans*-(H)₂ geometry as evidenced by ¹H NMR studies.³⁰

In contrast to 20H⁺, the structure of CpOs(dppm)(Br)(H)⁺ (12H⁺) cannot be definitively assigned based on the 1 H and 31 P NMR spectra in CD₂Cl₂. At room temperature this complex exhibits a broad singlet for the hydride resonance at -11.43 ppm in the ¹H NMR spectrum. If the sample is cooled to -20 °C, the fluxionality of the system is slowed and the hydride resonance appears as a triplet (${}^{2}J_{PH} = 22.5 \text{ Hz}$). The ${}^{31}P{}^{1}H$ NMR spectrum of 12H+ shows sharp doublets at -38.3 and -58.5 ppm (${}^{2}J_{PP} = 101$ Hz for both doublets) in the temperature range from -78 to 15 °C, which indicates that the P atoms are inequivalent. However, selective irradiation of the methylene protons (5.8 ppm in the ¹H NMR spectrum) while running the ¹H coupled ³¹P NMR spectrum at -30 °C results in a doublet of doublets (²J_{PH} = 22.1 Hz, ²J_{PP} = 101 Hz) for both phosphorus atoms. Comparing this coupling constant (22.1 Hz) with the 2 JpH coupling constant (22.5 Hz) of the hydride peak from the 1 H NMR spectrum indicates that the inequivalent phosphorus nuclei are equally coupled to the hydride ligand, which would be consistent with the *cis* fourlegged piano stool geometry for 12H⁺ if the coupling constant ²J_{PH} for the *cis* and trans P were coincidentally the same. Based on these results, we cannot confidently assign a structure to 12H⁺ although the other dppm complexes have cis structures; attempts to grow crystals for X-ray diffraction were unsuccessful.

Calorimetry Studies

Table III contains the heats of protonation (ΔH_{HM}) as determined by calorimetric titration of complexes 1-5 and 7-22 with CF₃SO₃H in 1,2dichloroethane (DCE) solvent at 25.0 °C according to eq 3. Plots of temperature vs. amount of acid added were linear indicating that the protonations occur rapidly and stoichiometrically. There was no decomposition of either the neutral or protonated species during the titration as evidenced by the normal pre- and post-titration curves. The protonated halide complexes in DCE solution were easily deprotonated with 1.0 equiv of diphenylguanidine; the resulting complexes were recovered by passing the mixtures down a short (~5 cm) alumina column using CH₂Cl₂ as the eluent. Crystallization of the complexes from CH₂Cl₂ layered with hexanes resulted in the pure unprotonated complexes. Recovery of the original hydride complexes was unsuccessful due to the air sensitivity of the protonated compounds in solution.

Equilibrium Study of Reaction (4)

A plot of $\ln K_{eq}$ vs 1/T, where the slope = $-\Delta\Delta H_{HM}/R$, was used to determine that $\Delta\Delta H_{HM} = -1.9 (\pm 0.3) \text{ kcal/mol}^{34}$ for reaction (4). The ΔH_{HM} for CpOs(PPh₂Me)₂H (6) was calculated (eq 6) to be -39.2 kcal/mol using

$$\Delta \Delta H_{HM} = \Delta H_{HM} \text{ (of 6)} - \Delta H_{HM} \text{ (of 4)}$$
(6)

$$\Delta \Delta \mathbf{G}^{\circ} = \Delta \Delta \mathbf{H}_{\mathbf{H}\mathbf{M}} \cdot \mathbf{T} \Delta \Delta \mathbf{S}^{\circ} \tag{7}$$

the ΔH_{HM} for 4 and $\Delta \Delta H_{HM}$ (-1.9 kcal/mol) for reaction (4). The $\Delta \Delta S^{\circ}$ at 298 K for reaction (4) was calculated to be -1.0 (±1.0) eu using eq 7, where $\Delta \Delta G^{\circ}$ = -RTlnK_{eq} at 298 K.

TABLE III. Heats of Protonation (ΔH_{HM}) of Cp'M(PR₃)(PR'₃)X Complexes

metal complex	ΔH _{HM} , ^{a,b} kcal/mol
CpOs(PPh ₃) ₂ Cl, 1	-19.7 (± 0.2)
CpOs(PPh ₃) ₂ Br, 2	-16.3 (± 0.1)
CpOs(PPh ₃) ₂ I, 3	-14.1 (± 0.1)
CpOs(PPh ₃) ₂ H, 4	-37.3 (± 0.1)
CpOs(PPh ₂ Me) ₂ Br, 5	-20.0 (± 0.2)
CpOs(PPh ₂ Me) ₂ H, 6	-39.2 (± 0.3)
CpOs(PPhMe ₂) ₂ Br, 7	-26.2 (± 0.1)
CpOs(PMe ₃) ₂ Br, 8	-29.4 (± 0.4)
CpOs(PPh ₃)(PMe ₃)Br, 9	-25.6 (± 0.4)
CpOs(PMe ₃) ₂ I, 10	-26.6 (± 0.4)
CpOs(PPh ₃)[(P(OEt) ₃]H, 11	-33.6 (± 0.3)
CpOs(dppm)Br, ^c 12	-17.5 (± 0.4)
CpOs(dppp)Br, ^c 13	-20.1 (± 0.4)
CpRu(PMe ₃) ₂ Cl, 14	-21.2 (± 0.4)
CpRu(PMe ₃) ₂ Br, 15	-20.9 (± 0.3)
CpRu(PMe ₃) ₂ I, 16	-20.6 (± 0.2)
CpRu(PPh ₃) ₂ H, 17	-29.7 (± 0.2)
Cp*Ru(PMe ₃) ₂ Cl, 18	-30.2 (± 0.2)
Cp*Ru(PPh ₃) ₂ H, 19	-35.2 (± 0.2)
CpRu(dppm)H, ^c 20	-28.9 (± 0.2)
CpRu(dppe)H, ^{c,d} 21	-29.0 (± 0.1)
CpRu(dppp)H, ^c 22	-29.6 (± 0.1)

^aFor protonation with 0.1 M CF₃SO₃H in DCE solvent at 25.0 °C. ^bNumbers in parentheses are average deviations from the mean of at least four titrations. ^cdppm = Ph₂PCH₂PPh₂, dppe = Ph₂P(CH₂)₂PPh₂ and dppp = Ph₂P(CH₂)₃PPh₂. ^dCis and trans isomers of the product contribute to the Δ H_{HM} of this complex. See text for details.

DISCUSSION

Halide and Hydride Ligand Effects on Metal Basicity (AHHM)

The heats of protonation (ΔH_{HM}) (Table III) for the halide complexes $CpOs(PPh_3)_2X$ (1-3) increase in the order: I (-14.1 kcal/mol) < Br (-16.3) kcal/mol) < Cl⁻ (-19.7 kcal/mol). One might have expected the reverse order for ΔH_{HM} since the higher electronegativity and lower polarizability of Cl⁻ should decrease the electron density on the metal. Previously, we showed that the basicity (ΔH_{HM}) of the metal in CpIr(CO)(PR₃) and Fe(CO)₃(PR₃)₂ increased with the basicity of the PR₃ ligand, as measured by its enthalpy of protonation (ΔH_{HP}) or pK_a. The simplest measure of the basicity of the halide ligand is the gas-phase proton affinity (P.A.) of X-(g),³⁵ which shows the basicities increase in the order: I (314.3 kcal/mol) < Br (323.6 kcal/mol) < Cl (333.3 kcal/mol).This trend in proton affinities is the same trend followed by the basicities of the CpOs(PPh₃)₂X complexes; thus, increasing the basicity of X⁻ increases the basicity of its complex. The increasing donor ability of the halide ligands from I to Cl is supported by equilibrium constants¹ⁱ for halide displacement reactions (eq 7) in CH₂Cl₂ solvent, which increase with Y⁻ as follows: I⁻ (3.5 x) 10^{-4} < Br (1.3 x 10^{-2}) < Cl (0.34).

$$Rh(PPh_3)_2(CO)(F) + PPN^+Y \longrightarrow Rh(PPh_3)_2(CO)Y + PPN^+F$$
(7)

While the basicity (ΔH_{HM}) of the metal in CpOs(PPh₃)₂X complexes is quite sensitive to the particular halide ion, changes in ΔH_{HM} for the ruthenium complexes CpRu(PMe₃)₂X are much smaller: I⁻ (-20.6 kcal/mol) < Br (-20.9 kcal/mol) < Cl⁻ (-21.2 kcal/mol). Although the same trend is observed, the ΔH_{HM} values are nearly the same within experimental error.

In earlier studies,³⁶ equilibrium constants (K_H+) for the reaction of CF₃SO₃H or RC(O)OH with Ir(CO)(PR₃)₂(X) (PR₃ = PPh₃, PPhMe₂; X = Cl, Br, I) to give M(CO)(PR₃)₂(X)(H)(sol) (eq 8) were determined. Equilibrium constants for the PPh₃ complexes increase in the order: Cl⁻ (1.14 x 10² M⁻¹) < Br (4.16 x 10² M⁻¹) < I⁻ (7.04 x 10²); for the PPhMe₂ complexes they increase in the same order: Cl⁻ (0.60 M⁻¹) < Br (4.0 M⁻¹) < I⁻ (6.2 M⁻¹). It is not suprising that these reactions follow a different trend than we observe for simple protonation since the K_{H+} values include not only protonation of the metal,

$$\frac{Ph_{3}P_{\prime\prime\prime\prime}X}{OC^{\checkmark}PPh_{3}} + CF_{3}SO_{3}H \xrightarrow{K_{H^{+}}} \frac{Ph_{3}P_{\prime\prime\prime\prime}X}{OC^{\checkmark}PPh_{3}} (8)$$

but also coordination of a 6th ligand (sol = either a solvent molecule or the anion of the acid). The energetics of protonation and of ligand coordination probably follow trends that are opposite, as the halide (X) is changed. In these reactions (eq 8), it is not possible to determine whether it is the protonation or coordination of the sixth ligand that determines the overall trend.

Hydride compounds CpOs(PPh₃)₂H (4) and CpOs(PPh₂Me)₂H (6) (Δ H_{HM} = -37.3 and -39.2 kcal/mol, respectively) are dramatically more basic than the analogous halide compounds. For example, they are 21.0 kcal/mol and 19.2 kcal/mol more basic than the bromo complexes 2 and 5 (Δ H_{HM} = -16.3 and -20.0 kcal/mol, respectively). The magnitude of these differences is illustrated by the estimated equilibrium constants (K) for the bromide-hydride pairs of

complexes. They can be estimated if ΔS° is assumed to be the same for the protonation of both CpOs(PR₃)₂H and CpOs(PR₃)₂Br. This assumption is supported by the $\Delta\Delta S^{\circ}$ value (-1.0 (±1.0) e.u) for reaction 4, which means that $T\Delta\Delta S^{\circ}$ (-0.30 kcal/mol) is small compared to $\Delta\Delta H_{HM}$ (-1.9 ± 0.3 kcal/mol); thus, $\Delta\Delta G^{\circ} \approx \Delta\Delta H_{HM}$ and $\Delta\Delta H_{HM} \approx$ -RTlnK_{eq}. Assuming that $\Delta\Delta S^{\circ}$ is also small for the equilibrium constant comparisons of 2 vs. 4 and 5 vs. 6, CpOs(PPh₃)₂H is 2.5 x 10¹⁵ times (i.e., $\Delta\Delta H_{HM} = 21.0$ kcal/mol) more basic than CpOs(PPh₃)₂Br, and CpOs(PPh₂Me)₂H is 1.2 x 10¹⁴ times (i.e., 19.2 kcal/mol) more basic than CpOs(PPh₂Me)₂Br. While these comparisons are approximate, they do demonstrate that the hydride complexes are remarkably more basic than the bromide and other halide analogs of CpOs(PR₃)₂X (Table III). The largest difference in basicity (23.2 kcal/mol) is between CpOs(PPh₃)₂H and CpOs(PPh₃)₂I; this difference means that the hydride complex is approximately 1.1 x 10¹⁷ times more basic than the iodide complex.

Tilset et al.,^{6b} determined that a 1e⁻ oxidation of CpM(CO)₃H (M=Cr, Mo, W) produces the 17-electron radical cation CpM(CO)₃H⁺, which is up to 22.8 pK_a units more acidic than the corresponding neutral CpM(CO)₃H complex. For example, CpW(CO)₃H⁺ (pK_a = -3.0) is 19.1 pK_a units more acidic than CpW(CO)₃H (pK_a = 16.1); at 25.0 °C the 19.1 pK_a units translate into 26.0 kcal/mol using the equation $\Delta\Delta G^{\circ} = -RTInK_{eq}$. The increase of 19.1 pK_a units ($\Delta\Delta G^{\circ} = 26.0$ kcal/mol) caused by a one-electron oxidation is only slightly larger than the 23.2 kcal/mol increase in basicity ($\Delta\Delta H_{HM}$) that results from substitution of an I- ligand by a hydride ligand. Thus, the replacement of I- by H⁻ has nearly the same effect as reducing the metal by one unit (+3 to +2 for the CpW(CO)₃H system). Thus, if Os has a +2 oxidation state in CpOs(PPh₃)₂I, CpOs(PPh₃)₂H behaves in its protonation reaction as if its oxidation state is approximately +1, i.e., the hydride ligand behaves as an H atom. Support for this view is found in molecular orbital calculations of Low and Goddard,³⁷ who concluded that the addition of H₂ to Pt(PH₃)₂ is not oxidative, since covalent bonds are formed. They suggested that formal oxidation numbers denote the maximum covalency of the metal not its oxidation state.

The trend in ΔH_{HM} values (I⁻ < Br⁻ < Cl⁻ < < H⁻) for the CpOs(PPh₃)₂X complexes can be understood in terms of the basicity of the X⁻ ligand, as measured by the proton affinity (P.A.) of X⁻(g). These P.A. values increase in the same order, I⁻ (314.3 kcal/mol) < Br⁻ (323.6 kcal/mol) < Cl⁻ (333.3 kcal/mol) < H⁻ (400.4 kcal/mol),³⁵ as the ΔH_{HM} values of their CpOs(PPh₃)₂X complexes. As the strongest X donor to the Os in the CpOs(PR₃)₂X complexes, the hydride ligand should make 4 and 6 the most basic complexes in the series, as is observed (Table III). In fact, there is an excellent correlation (r = 0.9995 for eq 9) between the donor ability of the halide or hydride ligand as measured by the P.A. of X⁻(g) and ΔH_{HM} for complexes 1-4 (Fig 2). Since P.A. values of a

$$-\Delta H_{HM} = 0.2698(P.A.) -70.64;$$
 in kcal/mol (9)

variety of anions (A⁻) (e.g., F⁻, CN⁻, CH₃CO₂⁻, C=CH⁻ and CH₃⁻) are known,³⁵ eq 9 allows one to estimate basicities for a range of CpOs(PPh₃)₂(A) complexes.

Figure 2. Correlation of metal basicities (ΔH_{HM}) of CpOs(PPh₃)₂X with proton affinities (P.A.) of X⁻(g).

Phosphine Effect on Metal Basicity (AHHM) in CpOs(PR3)2Br

The basicities (ΔH_{HM}) of the CpOs(PR₃)₂Br complexes increase in the order: PPh₃ (-16.3 kcal/mol) < PPh₂Me (-20.0 kcal/mol) < PPhMe₂ (-26.2 kcal/mol) < PMe₃ (-29.4 kcal/mol). The basicities (ΔH_{HM}) of the free phosphines,⁸ [PPh₃ (-21.0 kcal/mol) < PPh₂Me (-24.7 kcal/mol) < PPhMe₂ (-28.4 kcal/mol) < PMe₃ (-31.6 kcal/mol)] increase in the same order. A plot of - ΔH_{HM} vs - ΔH_{HP} (Fig 3) is fit by eq 10a with a correlation coefficient of 0.995. Equation 10a indicates that for the osmium series a 1.0 kcal/mol increase

$$-\Delta H_{HM} = -1.31 \Delta H_{HP} - 11.6$$
(10a)
$$-\Delta H_{HM} = 2.30 \text{ pK}_{a} + 10.1$$
(10b)

in the basicity of the phosphine ligands increases the basicity of the complex by 1.31 kcal/mol. Since there are two phosphine ligands, each contributes 0.655 kcal/mol toward the basicity of the compound.

It is of particular interest to note that the basicity (ΔH_{HM}) of the mixed phosphine ligand complex CpOs(PPh₃)(PMe₃)Br (9) (-25.6 kcal/mol) is not intermediate between that of CpOs(PPh₃)₂Br (2) (-16.3 kcal/mol) and CpOs(PMe₃)₂Br (-29.4 kcal/mol). Complex 9 is only 3.8 kcal/mol less basic than CpOs(PMe₃)₂Br (8), but 9.3 kcal/mol more basic than CpOs(PPh₃)₂Br (2). Steric or electronic factors could be responsible for 9 having a basicity closer to 8 than to 2. The 9.3 kcal/mol increase in the ΔH_{HM} caused by substituting one PPh3 in 2 ligand with PMe3 is similar to the 10.4 kcal/mol increase in basicity of the free phosphine [PPh₃(Δ H_{HP} = -21.2 kcal/mol) and PMe₃(Δ H_{HP} = -31.6 kcal/mol)].⁸ Since such a large change in ΔH_{HM} upon PPh₃ replacement by PMe3 has not been observed in any other metal complex system (vide infra), it seems unlikely that it can be caused by an electronic effect only. On the other hand, steric repulsion among the ligands around Os increases when the metal is protonated. Thus, protonation will be sterically disfavored by bulky ligands such as PPh3. For this reason, the basicity of CpOs(PPh3)2Br may be unusually low. Replacement of one PPh3 group in 2 by PMe3 to form CpOs(PPh₃)(PMe₃) (9) would reduce ligand repulsion and make 9 more basic than would be expected from the electronic effect of PMe3 alone. Replacement of the second PPh₃ would result in less steric reduction and less change in basicity, as is observed.

Substitution of one PPh₃ ligand in CpOs(PPh₃)₂H (4) (Δ H_{HM} = -37.3 kcal/mol) with P(OEt)₃ results in a decrease of 3.7 kcal/mol in the basicity of CpOs(PPh₃)[P(OEt)₃]H (11) (Δ H_{HM} = -33.6 kcal/mol). Since CpOs(PPh₃)[P(OEt)₃]Br is not protonated by CF₃SO₃H, it was not possible to measure its Δ H_{HM}. However, in order to compare the effect of P(OEt)₃ on the basicity of CpOs(PPh₃)(L)Br complexes, one can estimate that CpOs(PPh₃)[P(OEt)₃]Br would be ~ 21 kcal/mol less basic than CpOs(PPh₃)[P(OEt)₃]H, which is based on CpOs(PPh₃)₂Br being 21.0 kcal/mol less basic than CpOs(PPh₃)₂H. With this assumption, Δ H_{HM} for CpOs(PPh₃)[P(OEt)₃]Br would be 12.6 kcal/mol. Therefore, the basicities (Δ H_{HM}) of the CpOs(PPh₃)(L)Br complexes increase in the order: L = P(OEt)₃ (-12.6 kcal/mol, estimated) < PPh₃ (-16.3 kcal/mol) < PMe₃ (-25.6 kcal/mol). Thus, P(OEt)₃ is the weakest donor ligand in this series.

The influence of phosphine ligand basicity (ΔH_{HP}) on metal complex basicity (ΔH_{HM}) has previously been observed in the CpIr(CO)(PR₃) and Fe(CO)₃(PR₃)₂ series of complexes (PR₃ = PPh₃, PPh₂Me, PPhMe₂ and PMe₃),⁹ which were also studied by titration calorimetry under the same conditions as in this present study. Plotting - ΔH_{HM} of these complexes vs - ΔH_{HP} of the free phosphine results in linear correlations for Ir (eq 11) and Fe (eq 12) (Fig 3). In

$$\Delta H_{HM} = -0.298 (\Delta H_{HP}) + 23.9;$$
 in kcal/mol; for CpIr(CO)(PR₃), (11)

$$-\Delta H_{HM} = -0.916 (\Delta H_{HP}) - 5.36; \text{ in kcal/mol; for Fe}(CO)_3(PR_3)_2,$$
(12)

the Ir series, the phosphine causes a 0.298 kcal/mol change in the Ir basicity per 1.00 kcal/mol change in PR₃ basicity (ΔH_{HP}); in the Fe series each phosphine causes a 0.458 kcal/mol (0.916/2) change in Fe basicity (ΔH_{HM}) as the basicity of the phosphine (ΔH_{HP}) changes by 1.00 kcal/mol. Thus, the change in ΔH_{HM} per PR₃ ligand per 1.00 kcal/mol change in ΔH_{HP} increases

Figure 3. Correlations of metal basicity (ΔH_{HM}) with phosphine basicity (ΔH_{HP}) for the CpIr(CO)(PR₃) (top line), CpOs(PR₃)₂Br (middle line), and Fe(CO)₃(PR₃)₂ (lower line) series.

in the order: $CpIr(CO)(PR_3)$, 0.298 < Fe (CO)₃(PR₃)₂, 0.458 < CpOs(PR₃)₂Br, 0.655. A possible reason why the basicity of the Os compounds is most sensitive to the phosphine is that the higher coordination number (6) of the Os complexes causes more crowding in complexes which contain bulky PR₃ ligands, e.g., PPh₃ as noted above. These steric effects should be less important in the less crowded CpIr(CO)(PR₃) and Fe(CO)₃(PR₃)₂ complexes. Another reason for the greater sensitivity of the Os complexes is the absence of CO ligands which could absorb some of the electron density donated to the

metal by basic PR₃ ligands. The π -accepting CO ligands in the Fe and Ir complexes would make the metals in these systems less sensitive to the donor ability of the PR₃ ligands.

With three π -accepting CO ligands in Fe(CO)₃(PR₃)₂, as compared with only one in CpIr(CO)(PR₃), the Fe complexes are expected to be less sensitive to PR₃ basicity than the Ir complexes; however, as noted above, the reverse is true. The lower sensitivity of the Ir series could be due to the Cp ligand acting as a substantial π -accepting ligand. This is supported by MO calculations and ESCA studies of CpRh(CO)₂ that show the Cp π^* and filled metal orbitals have similar energies which allows substantial π -bonding from the metal to the Cp ligand.³⁸

Effect of Chelating Phosphines on Metal Basicity (AHHM)

The ΔH_{HM} of CpOs(PPh₂Me)₂Br (5) is -20.0 kcal/mol, while the ΔH_{HM} of the chelated complex CpOs(dppp)Br (13) is the same within experimental error at -20.1 kcal/mol; both complexes give *trans* protonated products (eq 3). Since the free phosphines [PPh₂Me (ΔH_{HP} = -24.7 kcal/mol)⁸ and dppp (ΔH_{HP1} = -23.4 kcal/mol)⁴⁰] have nearly the same basicity, it is not surprising that 5 and 13 have the same basicity. The basicity (-17.5 kcal/mol) of CpOs(dppm)Br (12) is less than those of 5 and 13, which is explained in part by the poorer σ donor ability of the dppm ligand (ΔH_{HP1} = -22.0 kcal/mol).³⁹ In addition, the dppm ligand forces the product CpOs(dppm)(Br)(H)+ (12H+) to adopt a *cis* structure; since the monodentate phosphine complex 5H+ could adopt either the *cis* or *trans* structure and it is observed to form only the *trans* isomer, the *cis* isomer must be of higher energy. The *cis* structure of CpOs(dppm)(H)+ (12H⁺) is therefore of relatively high energy which makes the protonation of 12 less favorable than that of 5 or 13. Thus, the basicity of the metal is decreased as a result of dppm forcing the complex to assume the less stable *cis* structure.

A decrease in basicity of the metal complex also occurs when dppp is replaced by the shorter chelates dppe and dppm that give the cis isomers in the CpRu(\overrightarrow{P} P)H series [\overrightarrow{P} P = dppp (22, ΔH_{HM} = -29.6 kcal/mol), dppe (21, ΔH_{HM} = -29.0), dppm (20, ΔH_{HM} = -28.9)], although the effects are less dramatic. The dppp product **22H**⁺ is completely *trans*; the dppe derivative 21H⁺ is a mixture of *cis* and *trans* isomers; and the dppm isomer is completely *cis* with the η^2 -H₂ structure CpRu(dppm)(η^2 -H₂)⁺.³⁰ In this series, it was not possible to study the monodentate analog CpRu(PPh₂Me)₂H due to its partial decomposition in the calorimeter. However, comparison of 20-22 with $CpRu(PPh_3)_2H(17, \Delta H_{HM} = -29.7 \text{ kcal/mol})$ indicates that the basicities of the CpRu(P)₂X complexes depend little on the monodentate or bidentate nature of the phosphine ligands. Morris and Jia^7 determined pK_a values in CH_2Cl_2 solvent for the same complexes 20H+-22H+ and observed the same trend of decreasing basicity as the product adopts the cis structure: trans- $CpRu(dppp)(H)_{2}+(pK_{a} = 8.4) > trans-CpRu(PPh_{3})_{2}(H)_{2}+(8.3) > trans CpRu(dppe)(H)_{2}+(7.3) > cis-CpRu(dppm)(H_{2})+(7.1) > cis-CpRu(dppe)(H_{2})+$ (7.0). For $CpRu(dppe)H_2^+$, where they were able to determine pK_a values for both the cis and trans isomers, the cis isomer was less basic than the trans.

Those complexes that are forced by the chelate to form the less stable cis-CpRu(\overrightarrow{P} P)(H₂)⁺ products are the least basic. This effect was also observed in W(CO)₃(tridentate phosphine)¹⁰ complexes in which the less

flexible MeC(CH₂PPh₂)₃ ligand forces the tungsten in the protonated product into a higher energy structure thereby decreasing the basicity of the metal by 6.2 kcal/mol compared to the basicity of the complex with the flexible PhP(CH₂CH₂PPh₂)₂ ligand. The opposite effect is observed when a small dppm chelate in Fe(CO)₃(dppm) distorts the geometry from the favored diaxial structure of Fe(CO)₃(PPh₂Me)₂ to a higher energy structure.⁴⁰ This distortion causes the Fe in Fe(CO)₃(dppm) to be 6.4 kcal/mol more basic than in Fe(CO)₃(PPh₂Me)₂. Similarly small-ring chelating ligands increase the basicities of the metal in the M(CO)₂(\overrightarrow{P} P)₂ (M = Cr, Mo, W) complexes.⁴¹

Effect of Cp and Cp* on Metal Basicity (AHHM)

The data in Table III show that the basicity of Cp*Ru(PMe₃)₂Cl is 9.0 kcal/mol greater than that of CpRu(PMe₃)₂Cl; Cp*Ru(PPh₃)₂H is 5.5 kcal/mol more basic than CpRu(PPh₃)₂H; and Cp*Ir(COD) is 5.7 kcal/mol more basic than CpIr(COD).¹¹ Converting the K_{eq} values reported by Norton and coworkers³ for the protonation of various anions in acetonitrile to Δ G° values, Cp*Mo(CO)₃⁻ is 4.5 kcal/mol (3.2 pK_a units) more basic than CpMo(CO)₃⁻, while Cp*Fe(CO)₂⁻ is 9.4 kcal/mol (6.9 pK_a units) more basic than CpFe(CO)₂⁻. Thus, the basicity enhancement (4.5-9.4 kcal/mol) caused by the replacement of Cp by Cp* depends on the metal and the ligands in the complex.

Effect of the Metal (Ru vs. Os) on Metal Basicity (AHHM)

It has previously been reported by this group⁴¹ that the third row metal complex Cp*₂Os (ΔH_{HM} = -26.6 kcal/mol) is 6.0 kcal/mol more basic than the second row metal analog Cp*₂Ru(ΔH_{HM} = -19.0 kcal/mol). We expand this
comparison (Chart I) by showing that $CpOs(PPh_3)_2H$ (4) is 7.6 kcal/mol more basic than $CpRu(PPh_3)_2H$ (18), $CpOs(PMe_3)_2Br$ (8) is 8.5 kcal/mol more basic than $CpRu(PMe_3)_2Br$ (15) and $CpOs(PMe_3)_2I$ (10) is more basic than $CpRu(PMe_3)_2I$ (16) by 6.0 kcal/mol; Norton and coworkers determined that $HOs(CO)_4$ is 2.9 kcal/mol (2.1 pK_a units) more basic (in CH₃CN) than $HRu(CO)_4$.⁴⁴ These comparisons illustrate that the magnitude of the increase in basicity when Ru is substituted by Os depends on the ligands in the complex.

Chart I

CONCLUSIONS

Systematically changing the ligands and/or the metal in $Cp'M(PR_3)(PR'_3)X$ complexes yields metal basicities (ΔH_{HM}) that range from -14.1 to -39.2 kcal/mol. We have demonstrated that the basicities of the CpOs(PPh₃)₂X complexes increase with the halide or hydride ligand in the order: I < Br < Cl << H; in fact, the substitution of a halide (X) ligand by a hydride (H-) causes the basicity of the metal to increase by as much as 23.2 kcal/mol. A linear correlation between the ΔH_{HM} of these complexes and the gas-phase proton affinities of the anions X⁻ is observed. Studies of the $CpOs(PR_3)_2Br$ complexes shows that there is a linear correlation between the basicity (ΔH_{HM}) of the metal center and the basicity of the phosphine (pKa or ΔH_{HP}), which increases in the order PPh₃ < PPh₂Me < PPhMe₂ < PMe₃ (Fig. 3). However, since the basicity (ΔH_{HM}) of the mixed phosphine complex CpOs(PPh₃)(PMe₃)Br does not lie midway between those of CpOs(PPh₃)₂Br and CpOs(PMe₃)₂Br as one might expect, the basicities of the CpOs(PR₃)₂Br complexes are probably not only determined by the basicities of the phosphines but also their steric properties. In the $CpM(\dot{P} P)X$ compounds with chelated phosphines, there was little difference in the basicity (ΔH_{HM}) of the metal when compared to the monodentate phosphine complexes; however the basicities (AH_{HM}) of the *cis*-complexes are less than those of the *trans*complexes. These titration studies show that complexes with the Cp* ligand are 5.5-9.0 kcal/mol more basic than those with the Cp ligand, and Os complexes are 6.0-8.5 kcal/mol more basic than the analogous Ru complexes.

Acknowledgment

We thank the National Science Foundation (Grant CHE-9103948) for support of this work, Dr. Victor Young for solving the crystal structure of **4H+CF3SO3**, Johnson-Mathey, Inc. for the generous loan of RuCl3•nH2O and OsO4, and Dr. Herbert Lehmkuhl for sending a copy of Eckhard Joussen's Dissertation.

REFERENCES

- (a) Feltham, R. D.; Brant, P. J. Am. Chem. Soc. 1982, 104, 641. (b) Chatt, J. Coord. Chem. Rev. 1982, 43, 337. (c) Timney, J. A. Inorg. Chem. 1979, 18, 2502. (d) Bursten, B. E.; Green, M. R. Prog. Inorg. Chem. 1988, 36, 393. (e) Duff, C. M.; Heath, G. A. Inorg. Chem. 1991, 30, 2528. (f) Lever, A. B. P. Inorg. Chem. 1990, 29, 1271. (g) Rahman, M. M.; Liu, H. Y.; Prock, A.; Giering, W. P. Organometallics 1987, 6, 650. (h) Prock, A.; Giering, W. P.; Green, J. E.; Meirowitz, R. E. Hoffman, S. L.; Woska, D. C.; Wilson, M.; Chang, R.; Chen, J.; Magnuson, R. H.; Eriks, K. Organometallics 1991, 10, 3479. (i) Araghizadeh, F.; Branan, D. M.; Hoffman, N. W.; Jones, J. H.; McElroy, E. A.; Miller, N. C.; Ramage, D. L.; Salazar, A. B.; Young, S. H. Inorg. Chem. 1988, 27, 3752. (j) Morris, R. J. Inorg. Chem. 1992, 31, 1471. (k) Poë, A. J. Pure Appl. Chem. 1988, 60, 1209. (l) Heath, G. A.; Humphrey, D. G. J. Chem. Soc., Chem. Comm. 1991, 1668.
- (2) Kristjánsdóttir, S. S.; Norton, J. in Transition-Metal Hydrides: Recent Advanced in Theory and Experiment; Dedieu, A., Ed.; VCH: New York, in press.
- (3) Kristjánsdóttir, S. S.; Moody, A. E.; Werberg, R. T.; Norton, J. R. Organometallics 1988, 7, 1983.
- Moore, E. J.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1986, 108, 2257.
- (5) Jordan, R. F.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 1255.

- (6) (a) Tilset, M. J. Am. Chem. Soc. 1992, 114, 2740-2741. (b) Ryan, O. B.;
 Tilset, M.; Parker, V. D. J. Am. Chem. Soc. 1990, 112, 2618. (c) Ryan, O. B.;
 Tilset, M.; Parker, V. D. Organometallics 1991, 10, 298.
- (7) (a) Jia, G.; Morris, R. H. J. Am. Chem. Soc. 1991, 113, 875. (b) Jia, G.;
 Lough, A. J.; Morris, R. H. Organometallics 1992, 11, 161.
- (8) Bush, R. C.; Angelici, R. J. Inorg. Chem. 1988, 27, 681.
- (9) Sowa, Jr., J. R.; Zanotti, V.; Facchin, G.; Angelici, R. J. J. Am. Chem.
 Soc. 1991, 113, 9185.
- (10) Sowa, Jr., J. R.; Angelici, R. J. Inorg. Chem., accepted for publication.
- (11) Sowa, Jr., J. R.; Angelici, R. J. J. Am. Chem. Soc. 1991, 123, 2537.
- (12) Rottink, M. K.; Angelici, R. J. J. Am. Chem. Soc. 1992, 114, 8296.
- (13) Perrin, D. D.; Armarego, W. L. F.; Perrin, D. R. Purification of Laboratory Chemicals, 2nd ed.; Pergamon: New York, 1980, p. 249 and 320.
- (14) (a) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 4173. (b) Hamilton, D. G.; Crabtree, R. H. J. Am. Chem. Soc. 1988, 110, 4126.
- (15) Wilczewski, T. J. Organomet. Chem. 1986, 317, 307.
- (16) Bruce, M. I.; Windsor, N. J. Aust. J. Chem. 1977, 30, 1601. In our preparation, ethanol solvent was used instead of methanol.
- (17) Bruce, M. I.; Humphrey, M. G.; Swincer, A. G.; Wallis, R. C. Aust. J.
 Chem. 1984, 37, 1747.
- (18) Treichel, P. M.; Komar, D. A. Syn. React. Inorg. Met. Org. Chem. 1980, 10, 205.
- (19) Tilley, T. D.; Grubbs, R. H.; Bercaw, J. E. Organometallics 1984, 3 274.

- (20) Ashby, G. S.; Bruce, M. I.; Tomkins, I. B.; Wallis, R. C. Aust. J. Chem.
 1979, 32, 1003.
- (21) (a) Bruce, M. I.; Tomkins, I. B.; Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc. Dalton Trans. 1982, 687. (b) Benn, R.; Brenneke, H.; Joussen, E.; Lehmkuhl, H.; Ortiz, F. L. Organometallics 1990, 9, 756. (c) Joussen, E. Ph.D. Dissertation, Universität Gesamthochochule Essen, 1991.
- (22) (a) Viggiano, A. A.; Henchman, M. J.; Dale, F.; Deakyne, C. A.;
 Paulson, J. F. J. Am. Chem. Soc. 1992, 114, 4299. (b) Olah, G.; Prakash,
 G. K. S.; Sommer, J. Superacids; Wiley: New York, 1985, p. 34.
- (23) Lange's Handbook of Chemistry, 13th ed.; Dean, J. A., Ed.; McGraw-Hill: New York, 1985.
- (24) Sharpe, P.; Richardson, D. E. J. Am. Chem. Soc. 1991, 113, 8339.
- (25) Abboud, J.-L. M.; Notario, R.; Berthelot, M.; Claramunt, R. M.; Cabildo,
 P.; Elguero, J.; El Ghomari, M. J.; Bouab, W.; Mokhlisse, R.;
 Guihéneuf, G. J. Am. Chem. Soc. 1991, 113, 7489.
- (26) (a) SHELX-86, G. M. Sheldride, Institut für Anorganische Chemie der Universität, Göttingen, F. R. G. (b) Enraf-Nonius Structure Determination Package: Enraf-Nonius; Delft, Holland. Neutral-atom scattering factors and anomalous scattering corrections were taken from: Interational Tables for X-ray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV.
- (27) Bruce, M. I.; Williams, M. L.; Patrick, J. M.; White, A. H. Aust. J. Chem. 1983, 36, 1353.

- (28) (a) Bruce, M. I.; Wong, F. S.; Skelton, B. W.; White, A. H. J. Chem. Soc. Dalton Trans. 1981, 1398. (b) Tiekink, E. R. T. Z. Kristallogr. 1992, 198, 158.
- (29) Wilczewski, T. J. Organomet. Chem. 1989, 361, 219.
- (30) Conroy-Lewis, F. M.; Simpson, S. J. J. Chem. Soc. Chem. Commun. 1987, 1675.
- (31) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112, 5166.
- (32) (a) Hart, D. W.; Bau, R.; Koetzle, T. F. J. Am. Chem. Soc. 1977, 99, 7557.
 (b) Orpen, A. G.; Brammer, L.; Allen, F. H.; Kennard, O.; Watson, D. G.; Taylor, R. J. Chem. Soc. Dalton Trans. 1989, S1-S83.
- (33) Jones, W. D.; Maguire, J. A. Organometallics 1987, 6, 1301.
- (34) The error is calculated as the standard deviation from the least-squares linear regression line.
- (35) (a) Bartmess, J. E.; Scott, J. A.; McIver, R. T. J. Am. Chem. Soc. 1979, 101, 6046. (b) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. Gas-Phase Ion and Neutral Thermochemistry. J. Phys. Chem. Ref. Data 1988, 17, Suppl. No. 1., 1-872. (c) Lias, S. G.; Liebman, J. F.; Levin, R. D. J. Phys. Chem. Ref. Data 1984, 13, 695.
- (36) (a) Pearson, R. G.; Kresge, C. T. Inorg. Chem. 1981, 20, 1878. (b)
 Deeming, A. J.; Shaw, B. L. J. Chem. Soc. (A) 1969, 1802.
- (37) Low, J. J.; Goddard III, W. A. J. Am. Chem. Soc. 1984, 106, 6928.
- (38) Lichtenberger, D. L.; Calabro, D. C.; Kellogg, G. E. Organometallics 1984, 3, 1623.
- (39) Sowa, Jr., J. R.; Angelici, R. J. Inorg. Chem. 1991, 30, 3534.

- (40) Sowa, Jr., J. R.; Zanotti, V.; Facchin, G.; Angelici, R. J. J. Am. Chem.
 Soc. 1992, 114, 160.
- (41) Sowa, Jr., J. R.; Bonanno, J. B.; Zanotti, V.; Angelici, R. J. Inorg. Chem. 1992, 31, 1370.
- (42) Moore, E. J.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1986, 108, 2257.

المحاجات المالية عين التراجي

PAPER II. LIGAND EFFECTS ON HEATS OF PROTONATION OF MULTIHYDRIDO-TRANSITION METAL COMPLEXES OF OSMIUM AND IRIDIUM

.

.....

ABSTRACT

Titration calorimetry has been used to determine heats of protonation (ΔH_{HM}) of the metal in $(H)_2Os(PR_3)_4$ $(PR_3=PPhMe_2, PPh_2Me, PPh(OEt)_2,$ P(OEt)₃), (H)₄Os(PR₃)₃ (PR₃=PPhMe₂, PPh₂Me), HIr(CO)(PPh₃)₃, and CpIr(ER₃)(H)₂ (ER₃=PPh₃, AsPh₃, P(OPh)₃) complexes with CF₃SO₃H in 1,2dichloroethane solvent at 25.0 °C. For the (H)₂Os(PR₃)₄ complexes, the basicity $(-\Delta H_{HM})$ increases from 34.2 to 43.3 kcal/mol in the order: $P(OEt)_3 < PPh(OEt)_2$ < PPh₂Me < PPhMe₂. The basicity (- Δ H_{HM}) of the metal in (H)₄Os(PR₃)₃ (PR₃ = PPhMe₂, PPh₂Me) increases by ~15 kcal/mol when two hydride ligands are replaced by a PR₃ ligand to give (H)₂Os(PR₃)₄. Replacement of the two hydride ligands in CpIr(PPh₃)(H)₂ by a CO ligand to give CpIr(PPh₃)(CO) results in a 10.4 kcal/mol increase in the basicity (ΔH_{HM}) of the metal. The basicities of the CpIr(ER₃)(H)₂ complexes increase in the order: $P(OPh)_3 \ll AsPh_3 \approx PPh_3$. Comparisons of the basicities of CpIr(PPh₃)(CO) and (PPh₃)₂(H)Ir(PPh₃)(CO) complexes show that replacement of Cp by the isoelectronic $(PR_3)_2(H)$ ligand set increases the basicity of the metal. In other complexes, this is also generally true, but the effect varies greatly.

INTRODUCTION

Many quantitative correlations of ligand parameters with spectroscopic, electrochemical, and kinetic properties of transition metal complexes have been reported.^{1,2} In this research group, correlations have been observed between the basicities of phosphine (PR₃) ligands as measured by their heats of protonation (Δ H_{HP}) with CF₃SO₃H in 1,2-dichloroethane (DCE) solution (eq 1)³ and the heats of protonation (Δ H_{HM}) of their transition metal complexes

$$PR_3 + CF_3SO_3H \xrightarrow{DCE} HPR_3^+CF_3SO_3^-; \Delta H_{HP}$$
(1)

$$ML_{n} + CF_{3}SO_{3}H \xrightarrow{DCE} HML_{n}^{+}CF_{3}SO_{3}; \Delta H_{HM}$$
(2)

(eq 2). Such correlations were demonstrated in studies of $Fe(CO)_3(PR_3)_2$,⁴ $CpIr(PR_3)(CO)$,⁴ $W(CO)_3(PR_3)_3$,⁵ $Fe(CO)_3(PP)^6$ and $M(CO)_2(PP)_2$ (M = Cr, Mo, W),⁷ where PP is a bidentate phosphine. Also, the effects of methylsubstituted cyclopentadienyl ligands on the basicity of the metal in (η^5 - $C_5Me_xH_{5-x}$)Ir(1,5-cyclooctadiene)⁸ have been determined previously. In this report, we extend our studies of the effects of phosphorus-donor ligands on metal basicity (Δ H_{HM}) to the (H)₂Os(PR₃)₄ series of complexes, where PR₃ = P(OEt)₃, PPh(OEt)₂, PPh₂Me, PPhMe₂ (eqs 3 and 4).

Also, we compare the donor ability of two hydride ligands with the donor ability of CO and PR₃ (Chart I). There are many examples of isoelectronic pairs of complexes that are related by the replacement of $(H)_2$

Chart I

$$M - CO M - PR_3$$

ligands by a CO or PR₃ ligand. In the present study, we compare basicities $(\Delta H_{HM}, eq 5) of (H)_4Os(PR_3)_3$, where PR₃ = PPhMe₂, PPh₂Me, with those (eq 3)

of $(H)_2Os(PR_3)_4$, which contain one more PR₃ but two fewer hydride ligands. Also, we examine the effects of $(H)_2$ and CO on the basicities of the metal in $CpIr(PPh_3)(H)_2$ (eq 6) and the isoelectronic $CpIr(PPh_3)(CO)$ complex. In considering whether $(H)_2$ would make the metal more or less basic than

the analogous CO or PR₃ complex, we note that the hydride ligand in CpOs(PPh₃)₂H makes the Os 23.2 kcal/mol more basic than the corresponding iodide complex CpOs(PPh₃)₂I.⁹ So, as compared with a halide ligand, the hydride is a very strong donor. This suggests that dihydride complexes may be very basic as compared with the analogous CO and PR₃ complexes. On the other hand, the formal oxidation state of the metal in the dihydride is +2 units higher than in the CO or PR₃ complexes which should make the dihydride complex less basic. Further complicating this comparison are differences in the geometries of the (H)₂ and CO or PR₃ complexes because there is one more ligand (two H's) in the (H)₂ complexes. The Δ H_{HM} measurements of reactions (3), (5) and (6) clarify the effects of (H)₂, CO, and PR₃ ligands on the basicities of the metals in these complexes. We also sought to compare the effects of the η^5 -cyclopentadienyl (Cp) ligand and isoelectronic (PR₃)₂(H) ligand set (Chart II) on the basicity of a metal. Again, there are many analogous CpM and (PR₃)₂(H) complexes;

Chart II

we have chosen to compare ΔH_{HM} for CpIr(PPh₃)(CO) with (PPh₃)₂(H)Ir(PPh₃)(CO) (eq 7). In this comparison, the oxidation state of the metal is the same (+1) but the nature of the ligands is quite different.

$$Ph_{3}P - \frac{H}{Ir} PPh_{3} + CF_{3}SO_{3}H \xrightarrow{DCE} Ph_{3}P \xrightarrow{H} PPh_{3} CF_{3}SO_{3}^{-} (7)$$

$$CO \qquad 10 \qquad 10H^{+}$$

EXPERIMENTAL SECTION

General Procedures

All preparative reactions and solvent purifications were carried out under an Ar atmosphere using standard Schlenk techniques. The complexes $(H)_2Os(PPhMe_2)_4 (1), {}^{10} (H)_2Os(PPh_2Me)_4 (2), {}^{10} (H)_2Os[PPh(OEt)_2]_4 (3), {}^{11}$ (H)₂Os[P(OEt)₃]₄ (4),¹¹ (H)₄Os(PPhMe₂)₃ (5),¹² (H)₄Os(PPh₂Me)₃ (6),¹² CpIr(PPh₃)(H)₂ (7),¹³ CpIr(AsPh₃)(H)₂ (8),¹³ and CpIr[P(OPh)₃](H)₂ (9)¹³ were prepared as previously described. The complex $HIr(CO)(PPh_3)_3$ (10) was used as received from Strem Chemicals, Inc. Deuterated solvents (CD₂Cl₂ or CDCl₃) were stored over molecular sieves in air. The 1,2-dichloroethane (99.8%, HPLC grade) was purchased from Aldrich and distilled from P_4O_{10} immediately before use. The CF₃SO₃H was purchased from 3M Co. and purified as previously described.³ The ¹H NMR spectra were recorded in either CD₂Cl₂ or CDCl₃ using a Nicolet-NT 300 MHz or a Varian VXR-300 MHz spectrometer with TMS (δ =0.00 ppm) as the internal standard. T₁ values were measured from 25 °C to -85 °C using the standard inversion recovery sequence $180-\tau - 90.^{14}$ The T₁(min) value is the minimum value of T₁ determined from a T_1 vs temperature plot. The ³¹P{¹H} NMR spectra were recorded in CD₂Cl₂ on a Varian VXR-300 MHz spectrometer using 85% phosphoric acid (δ =0.00 ppm) as the external standard.

Calorimetric titrations were performed under an Ar atmosphere using a Tronac model 458 isoperibol calorimeter as originally described³ and then modified.⁴ A two minute titration period was used for all complexes and was preceded and followed by heat capacity calibrations. During the titration period approximately 0.8 mL of a 0.1 M CF₃SO₃H solution (standardized to a precision of \pm 0.0002 M) in DCE solvent was added at a constant rate to 50 mL of a 1.7 mM solution of the metal complex (5-10% excess) in DCE at 25.0 °C.

The ΔH_{HM} values were measured using two different standardized acid solutions and are reported as the average of at least four titrations and as many as six. The heat of dilution (ΔH_{dil}) of the acid in DCE (-0.2 kcal/mol)⁴ was used to correct the reaction enthalpies.

Protonation Reactions

Compounds 1-10 were protonated for NMR characterization by dissolving ~5 mg of the complex in 0.5 mL of CD₂Cl₂ (or CDCl₃) in an NMR tube under an Ar atmosphere at room temperature. To the solution was added 1 equiv of CF₃SO₃H by microliter syringe through a rubber septum. Solutions of the protonated complexes are stable as long as they are kept under argon. Complexes $3H+BF_4$, $^{11}4H+BPh_4$, $^{11}5H+BPh_4$, $^{11}7H+BF_4$, $^{13}8H+BF_4$, 13 $9H+BF_4$, 13 and $10H+SiF_5$. 16 have been previously isolated and characterized; their ¹H NMR spectra are very similar to those of the same complexes that we prepared by protonation with CF₃SO₃H. The ¹H NMR spectra of all the protonated complexes are given below:

 $[(H)_{3}Os(PPhMe_{2})_{4}]^{+}CF_{3}SO_{3}^{-} (1H^{+}CF_{3}SO_{3}^{-}): {}^{1}H NMR (CD_{2}Cl_{2}) \delta 7.1-7.3$ (m, 20H, Ph), 1.45 (br s, 24H, CH₃), -7.77 (quintet, ${}^{2}J_{PH} = 9.9$ Hz, 3H, Os-H). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂) δ -32.7 (s).

 $[(H)_{3}Os(PPh_{2}Me)_{4}]^{+}CF_{3}SO_{3}^{-}(2H^{+}CF_{3}SO_{3}^{-}): {}^{1}H NMR (CD_{2}Cl_{2}) \delta 7.1-7.3$ (m, 40H, Ph), 0.93 (br s, 12H, CH₃), -6.82 (quintet, ${}^{2}J_{PH} = 9.2$ Hz, 3H, Os-H). ${}^{31}P{}^{1}H$ NMR (CD₂Cl₂) δ -19.5 (s).

 $[(H_2)(H)Os[PPh(OEt)_2]_4]+CF_3SO_3- (3H+CF_3SO_3-): {}^{1}H NMR (CD_2Cl_2) \delta$ 7.32-7.58 (m, 20H, Ph), 3.44 (m, 8H, CH₂), 3.22 (m, 8H, CH₂), 1.05 (t, ${}^{2}J_{HH} = 7.2$ Hz, 24H, CH₃), -6.80 (br s, 3H, Os-H).

 $[(H_2)(H)Os[P(OEt)_3]_4]+CF_3SO_3- (4H+CF_3SO_3-): {}^{1}H NMR (CDCl_3) \delta 3.9 (m, 24H, CH_2), 1.3 (t, {}^{2}J_{HH} = 6.2 Hz, 36H, CH_3), -8.23 (br s, 3H, Os-H).$

 $[(H_2)(H)_3Os(PPhMe_2)_3]^+CF_3SO_3^- (5H^+CF_3SO_3^-): {}^{1}H NMR (CD_2Cl_2) \delta 7.1-7.4 (m, 15H, Ph), 1.78 (br s, 18H, CH_3), -9.68 (br s, 5H, Os-H). {}^{31}P{}^{1}H} NMR (CD_2Cl_2) \delta -33.4 (s).$

 $[(H_2)(H)_3Os(PPh_2Me)_3] + CF_3SO_3 - (6H + CF_3SO_3 -): {}^{1}H NMR (CD_2Cl_2) \delta 7.1 - 7.3 (m, 30H, Ph), 1.93 (br s, 9H, CH_3), -6.24 (br s, 2H, Os(H_2)), -10.96 (br s, 3H, Os-(H)_3). {}^{31}P{}^{1}H NMR (CD_2Cl_2) \delta -13.4 (s).$

 $[CpIr(PPh_3)(H)_3]+CF_3SO_3- (7H+CF_3SO_3-): \ ^1H NMR (CD_2Cl_2) \delta 7.3-7.6 (m, 15H, Ph), 5.92 (s, 5H, Cp), -12.39 (d, ^2J_{PH} = 7.9 Hz, 3H, Ir-(H)_3).$

 $[CpIr(AsPh_3)(H)_3] + CF_3SO_3 - (8H + CF_3SO_3 -): {}^{1}H NMR (CD_2Cl_2) \delta 7.3 - 7.6$ (m, 15H, Ph), 5.98 (s, 5H, Cp), -12.69 (s, 3H, Ir-(H)_3).

 $[CpIr[P(OPh)_3](H)_3]+CF_3SO_3- (9H+CF_3SO_3-): ^{1}H NMR (CD_2Cl_2) \delta 7.2-7.5$ (m, 15H, Ph), 5.50 (s, 5H, Cp), -12.48 (d, $^{2}J_{PH} = 8.5 Hz$, 3H, Ir-(H)₃).

 $[(H)_{2}Ir(CO)(PPh_{3})_{3}]+CF_{3}SO_{3}-(10H+CF_{3}SO_{3}-): {}^{1}H NMR (CD_{2}Cl_{2}) \delta 6.8-7.5$ (m, 45H, Ph), -9.52 (m, 1H, Ir-H), -11.4 (dtd, ${}^{2}J_{PH} = 114 Hz$, ${}^{2}J_{PH} = 19.2 Hz$, ${}^{2}J_{HH} = 4.8 Hz$, 1H, Ir-H).

The low temperature spectra (see Results) were recorded in CD_2Cl_2 solvent.

RESULTS

Characterization of cis-(H)2Os(PR3)4 (1-4) and H3Os(PR3)4+ (1H+-4H+)

Complexes 1-4 have previously¹⁰⁻¹² been identified by ¹H and ³¹P{¹H} NMR spectroscopy as having *cis*-octahedral structures (eqs 3 and 4). Bordignon et al.,¹¹ assigned (H)(H₂)Os[P(OEt)₃]₄+ (4H+) a *trans*-octahedral geometry (eq 4) based on its ¹H and ³¹P{¹H} NMR spectra; (H)(H₂)Os(PPh(OEt)₂)₄+ (3H+) was assigned,¹¹ based on the low temperature ³¹P{¹H} and ¹H NMR spectra, a distorted *trans*-octahedral structure (eq 4) with two of the *trans* PR₃ ligands bent slightly toward the η^2 -dihydrogen (H₂) ligand and the other two *trans* PR₃ ligands bent slightly toward the hydride (H) ligand.

The structure of the related $(H)_3Os(PPh_3)_4^+$ complex, determined by Xray crystallography,¹⁷ has a distorted tetrahedral arrangement of phosphines (eq 3), while the hydrides, which were not located, were proposed to be capping three of the faces. Seidel et al.¹⁷ noted that [(H)₃Os(PPh₃)₄+] is fluxional at room temperature as evidenced by a quintet for the hydride resonance in the ¹H NMR spectrum and a singlet in the ³¹P{¹H} NMR spectrum; at -70 °C there is a broad singlet for the hydride in the ¹H NMR spectrum and two broad singlets in the ³¹P{¹H} NMR spectrum.¹⁷ At room temperature (H)₃Os(PPh₂Me)₄+ (**2H**⁺) is also fluxional as indicated by a quintet for the hydride ligands in the ¹H NMR spectrum and a singlet in the ³¹P{¹H} NMR spectrum. The fluxionality of **2H**⁺ is slowed at -75 °C as suggested by a broad singlet for the hydride in the ¹H NMR spectrum and two broad singlets at -13.8 and -25.0 ppm in the ³¹P{¹H} NMR spectrum. The T₁(min) value (159 ms,-45

°C) for the hydride peak in 2H⁺ is consistent with a classical trihydride structure.¹⁴ The T₁(min) along with the similarities in the low temperature ³¹P{¹H} and ¹H NMR spectra of 2H⁺ to those of (H)₃Os(PPh₃)₄⁺ suggests that (H)₃Os(PPh₂Me)₄⁺ (2H⁺) also has a structure similar to that drawn in eq 3.

The hydride signal in the ¹H NMR spectrum of the less sterically crowded complex (H)₃Os(PPhMe₂)₄+ (**1H**⁺) occurs as a quintet at room temperature but as a broad singlet at -75 °C. The T₁(min) value (177 ms, -60 °C) for the hydride resonance is consistent with the trihydride structure.¹⁴ Since only a singlet is observed in the ³¹P{¹H} NMR spectrum from 20 to -75 °C, it is not possible to establish the geometry. Therefore, it is possible that **1H**⁺ has either a geometry similar to that drawn in eq 3 or a *trans*-octahedral geometry in which the phosphines are equivalent in the equatorial plane and the hydride ligands are fluxional. Based on the structure of (H)₃Os(PPh₃)₄⁺, it seems likely that **1H**⁺ also has a structure similar to that shown in eq 3.

Characterization of (H)₄Os(PR₃)₃ (5, 6) and (H)₅Os(PR₃)₃+ (5H⁺, 6H⁺)

Hart and coworkers¹⁸ using neutron diffraction showed that (H)₄Os(PPhMe₂)₃ (5) has a pentagonal bipyramidal geometry with four hydrides and a PPhMe₂ ligand in the equatorial positions (eq 5) and the other two phosphines in the apical positions. The room temperature ¹H NMR spectra of (H)₄Os(PPhMe₂)₃ (5) and (H)₄Os(PPh₂Me)₃ (6) indicate that they are both fluxional as suggested by the hydride resonances of both complexes being split into quintets. At lower temperatures (0 to -75 °C) each complex exhibits a broad singlet for the hydride resonance. In the ³¹P(¹H) NMR spectra of 5 and 6 from 20 to -70 °C only a singlet is observed; this too indicates that the

complexes are fluxional over this temperature range. Because of the fluxionality of 5 and 6, it is not possible to establish their structures by NMR spectroscopy in this temperature region; however, it seems likely that 6 has the pentagonal bipyramidal structure established for $H_4Os(PPhMe_2)_3$ (5, eq 5).

Structures of the protonated products $5H^+$ and $6H^+$ or related derivatives have not been established by X-ray or neutron diffraction. In the ¹H NMR spectrum of (H₂)(H)₃Os(PPhMe₂)₃⁺ (5H⁺) at room temperature, the broad hydride singlet indicates that the compound is fluxional; the singlet in the ³¹P{¹H} NMR spectrum supports this conclusion. The hydride peak remains a broad singlet even at -75 °C in the ¹H NMR spectrum; however, the ³¹P{¹H} NMR spectrum of **5H**⁺ at -75 °C exhibits a triplet at -18.8 ppm (²J_{PP} = 19.5 Hz) and a doublet at -23.4 ppm (²J_{PP} = 19.5 Hz). This doublet and triplet suggest that the phosphines are arranged in a manner similar to those drawn for **5** (eq 5). Caulton et al.,^{15a} report the T₁(min) for **5H**⁺ to be 68 ms (-75 °C) and assign it the (H₂)(H)₃Os(PPhMe₂)₃⁺ structure.

In the ³¹P{¹H} NMR spectrum of (H₂)(H)₃Os(PPh₂Me)₃+ (6H⁺), a singlet is observed at -13.4 ppm; at -75 °C a doublet at -1.8 ppm (²J_{PP} = 32.7 Hz) and a broad singlet at -12.5 ppm are observed. Two hydride signals for (H₂)(H)₃Os(PPh₂Me)₃+ (6H⁺) are observed in the ¹H NMR spectrum at -6.24 and -10.96 ppm; the integrals of these peaks are in a 2:3 ratio from 20 to -70 °C. The hydride peak at -6.24 ppm in the ¹H NMR spectrum has a T₁(min) value of 30 ms (-55 °C), which is consistent with the dihydrogen (η^2 -H₂) assignment; the hydride peak at -10.96 ppm has a T₁(min) value of 70 ms (-55 °C). Therefore, the structure of 6H⁺ is suggested to be similar to that drawn in eq 5.

Characterization of CpIr(ER₃)(H)₂ (7-9) and CpIr(ER₃)(H)₃+ (7H+-9H+)

Complexes 7-9 have the three-legged piano-stool structure (eq 6) as suggested by ¹H NMR spectroscopy.¹³ A neutron diffraction study of $[CpIr(PMe_3)(H)_3]BF_4$ indicates that it is a normal trihydride complex;^{13,19} therefore, it is likely that complexes **7H**+**.9H**+ also adopt the four-legged piano stool structure (eq 6) containing classical hydride ligands [T₁ for $CpIr(PPh_3)(H)_3^+ = 200$ ms (minimum not observed, 210K, 500 MHz); $CpIr(AsPh_3)(H)_3^+ = 210$ ms (minimum not observed, 210K, 500 MHz)].¹⁹

Characterization of (H)Ir(CO)(PPh3)3 (10) and (H)2Ir(CO)(PPh3)3 (10H+)

The structures of both 10^{20a} and $10H^{+20b}$ have been established by X-ray crystallography. In the structure of 10 the hydride and CO ligands are in the axial positions of a trigonal bipyramid as shown in eq 7; $10H^+$ has the *cis*, *mer*-(H)₂Ir(CO)(PPh₃)₃+ structure also shown in eq 7.

Calorimetric Studies

The heats of protonation (ΔH_{HM}) obtained from titrations of complexes 1-10 with CF₃SO₃H in 1,2-dichloroethane (DCE) solvent at 25.0 °C are presented in Table I. Plots of temperature vs amount of acid added were linear, which indicates that the complexes are protonated rapidly and quantitatively. There was no decomposition of either the neutral or the protonated species during the titration as suggested by the normal pre- and post-titration baseline slopes for all of the compounds. It is possible to deprotonate compounds **4H**+**.9H**+ with 1 equiv of 1,3-diphenylguanidine (ΔH_{HN} = -37.2 kcal/mol);³ however, only compounds **7-9** can be easily purified by eluting the sample on a short neutral alumina column with CH₂Cl₂. The osmium compounds 4-6 were separated from the protonated 1,3diphenylguanidine by extracting the complexes with 3 x 2 mL of benzene and then recrystallizing them from a minimal amount of methanol solvent at -20 °C. Compounds 1H+-3H+ and 10H+ do not deprotonate with 1,3diphenylguanidine; this was expected, since diphenylguanidine is a weaker base than compounds 1-3 and 10.

The low dielectric constant ($\epsilon = 10.46$)²¹ for DCE means that the protonated products occur as ion pairs. It has been estimated that dissociation of these ion pairs, autoprotolysis, and dimerization of CF₃SO₃H contribute little to the measured ΔH_{HM} values.^{3,7,9b} Thus, we attribute trends and differences in the ΔH_{HM} values to the properties of the reactant and product complexes.

$(\Pi)\Pi(U)(PPn3)3$, and $CPI(ER3)(\Pi)2$ Co		
metal complex	ΔH _{HM} , ^{a,b} kcal/mol	
cis-(H) ₂ Os(PPhMe ₂) ₄ (1)	-43.3 (± 0.3)	
<i>cis-</i> (H) ₂ Os(PPh ₂ Me) ₄ (2)	-38.8 (± 0.2)	
<i>cis-</i> (H) ₂ Os(PPh(OEt) ₂) ₄ (3)	$-37.2 (\pm 0.2)$	
<i>cis-</i> (H) ₂ Os(P(OEt) ₃) ₄ (4)	-34.2 (± 0.2)	
(H)4Os(PPhMe2)3 (5)	$-27.7 (\pm 0.1)$	
(H)4Os(PPh2Me)3 (6)	-23.9 (± 0.3)	
CpIr(PPh ₃)(H) ₂ (7)	-19.7 (± 0.2)	
CpIr(AsPh ₃)(H) ₂ (8)	-19.4 (± 0.1)	
CpIr[P(OPh)3](H)2 (9)	-11.9 (± 0.2)	
(H)Ir(CO)(PPh ₃) ₃ (10)	-38.8 (± 0.4)	
CpIr(PPh ₃)(CO) ^c	-30.1(± 0.2)	

Table I. Enthalpies of Protonation (ΔH_{HM}) of $(H)_2Os(PR_3)_4$, $(H)_4Os(PR_3)_3$, $(H)Ir(CO)(PPh_3)_3$, and $CpIr(ER_3)(H)_2$ Complexes

^aFor protonation with 0.1 M CF₃SO₃H in DCE solvent at 25.0 °C. ^bNumbers in parentheses are average deviations from the mean of at least four titrations. ^cReference 4.

DISCUSSION

Comparison of Basicities (ΔH_{HM}) of Complexes with Isoelectronic Ligand Sets: (H)₂, CO and PR₃.

As noted in the Introduction, one focus of these studies was to determine the effect of the 2-electron ligand sets (H)₂, CO and PR₃ on the basicities of transition metal complexes. A comparison of ΔH_{HM} values (Table I) for)H)4Os(PPhMe₂)₃ (5) (-27.7 kcal/mol) and (H)₂Os(PPhMe₂)₄ (1) (-43.3 kcal/mol) shows that replacement of two hydride ligands in (H)4Os(PPhMe₂)₃ (eq 4) by one PPhMe₂ ligand to give (H)₂Os(PPhMe₂)₄ (eq 3) increases the basicity of the Os by 15.6 kcal/mol. A slightly smaller increase (14.9 kcal/mol) in basicity occurs when two hydrides in (H)4Os(PPh₂Me)₃ are replaced by one PPh₂Me to give (H)₂Os(PPh₂Me)₄. This smaller increase is consistent with PPh₂Me ($\Delta H_{HP} = -24.7$ kcal/mol)³ being a weaker donor ligand than PPhMe₂ ($\Delta H_{HP} = -28.4$ kcal/mol).³ To illustrate the magnitude of the increase in basicity of the metal (ΔH_{HM}) when (H)₂ is replaced by PPhMe₂, the equilibruim constant (K_{eq}) for eq 7 can be estimated from $\Delta H_{HM} \cong \Delta G^{\circ} = -RTln K_{eq}$

$$(H_{2})(H)_{3}Os(PPhMe_{2})_{3}^{+} + (H)_{2}Os(PPhMe_{2})_{4} \xrightarrow{K_{eq}} 5H^{+} 1$$

$$(H)_{4}Os(PPhMe_{2})_{3} + (H)_{3}Os(PPhMe_{2})_{4}^{+} (7)$$

$$5 \qquad 1H^{+}$$

(assuming $\Delta S^{\circ} \cong 0$ e.u., which is a reasonable approximation for protonation of similar neutral complexes).⁴ Thus, a 15.6 kcal/mol increase in the basicity of the metal means that (H)₂Os(PPhMe₂)₄ is approximately 2.7 x 10¹¹ times more basic than (H)₄Os(PPhMe₂)₃.

If the (H)₂ ligand set in CpIr(PPh₃)(H)₂ (Δ H_{HM} = -19.7 kcal/mol) is substituted by a CO ligand to give CpIr(PPh₃)(CO) (Δ H_{HM} = -30.1 kcal/mol),⁴ the basicity of the metal is increased by 10.4 kcal/mol. In terms of a K_{eq} equilibrium constant (Δ S° \cong 0; Δ H_{HM} $\cong \Delta$ G° = -RTln K_{eq}), CpIr(PPh₃)(CO) is 4.2 x 10⁷ times more basic than CpIr(PPh₃)(H)₂. Thus, the basicity of the metal increases with the isoelectronic ligand sets in the following order: (H)₂ < CO < PR₃.

These results indicate that the higher oxidation state, by +2 units, in $M(H)_2$ complexes as compared with that of M(CO) is responsible for the 10.4 kcal/mol (or 4.2 x 10⁷ K_{eq}) lower basicity of CpIr(PPh₃)(H)₂ as compared with CpIr(PPh₃)(CO). On the other hand, the 4.2 x 10⁷ factor is small compared to the change in basicity of a metal complex which undergoes a 1-electron oxidation. For example,²² a 1-electron oxidation of CpW(CO)₃H (pK_a = 16.1) to CpW(CO)₃H⁺ (pK_a = -3.0) increases the acidity of the hydride ligand by a factor of 10¹⁹. Although the metal in CpIr(PPh₃)(CO) is formally oxidized by +2 units in CpIr(PPh₃)(H)₂, the Ir basicity changes much less than the W does in a +1 oxidation of CpW(CO)₃H.

Effect of PR₃ Ligands on the Basicities (ΔH_{HM}) of (H)₂Os(PR₃)₄ and (H)₄Os(PR₃)₄ Complexes

Replacement of the PPh₂Me ligands in $(H)_2Os(PPh_2Me)_4$ (2) by PPhMe₂ increases the basicity (ΔH_{HM} , eq 3) of Os by 4.5 kcal/mol; thus, on average each PPhMe₂ ligand increases the basicity of the metal center by 1.1 kcal/mol (4.5/4) over a PPh₂Me ligand. Replacement of the PPh₂Me ligands in (H)₄Os(PPh₂Me)₃ (6) by PPhMe₂ to give (H)₄Os(PPhMe₂)₃ (5) increases the basicity (eq 5) of the metal by 3.8 kcal/mol or by 1.3 kcal/mol per PR₃ ligand. Thus, it appears that in both (H)₂Os(PR₃)₄ and (H)₄Os(PR₃)₃ the replacement of one PPh₂Me by PPhMe₂ increases the basicity (Δ H_{HM}) of the metal by ~1.2 kcal/mol. In other systems, the replacement of PPh₂Me by PPhMe₂ increases the metal basicity by 0.8 kcal/mol per PR₃ in W(CO)₃(PR₃)₃,⁵ by 0.9 kcal/mol in CpIr(PR₃)(CO),⁴ by 1.8 kcal/mol per PR₃ in Fe(CO)₃(PR₃)₂,⁴ and by 3.1 kcal/mol per PR₃ in CpOs(PR₃)₂Br.^{9b} Thus, the effect of replacing PPh₂Me by PPhMe₂ on metal basicity depends significantly on the metal and other ligands in the complex.

The basicities $(-\Delta H_{HM})$ of the $(H)_2Os(PR_3)_4$ complexes (eqs 3 and 4) increase with PR₃ in the order: P(OEt)₃ (34.2 kcal/mol) < PPh(OEt)₂ (37.2 kcal/mol) < PPh₂Me (38.8 kcal/mol) < PPhMe₂ (43.3 kcal/mol). This is the same trend as observed for χ values for these ligands obtained for $\upsilon(CO)$ frequencies for Ni(CO)₃(PR₃) complexes.²³

Basicities (ΔH_{HM}) of CpIr(ER₃)(H)₂ Complexes

It was determined that the heats of protonation (ΔH_{HM} , eq 6) of the CpIr(ER₃)(H)₂ complexes increase in the order: P(OPh)₃ (-11.9 kcal/mol) < AsPh₃ (-19.4 kcal/mol) \approx PPh₃ (-19.7 kcal/mol). The CpIr(PPh₃)(H)₂ complex has essentially the same basicity as CpIr(AsPh₃)(H)₂, which suggests that the PPh₃ and AsPh₃ ligands have similar donor properties. This is in sharp contrast to the free ligand (ER₃) basicities as measured by the gas phase heats of adduct formation of BH₃ with ER₃ [PPh₃ (-36.6 kcal/mol) is 10.0 kcal/mol more basic than AsPh₃ (-26.6 kcal/mol)],²⁴ the pK_b values [PPh₃ (8.57) is 2.03 units more basic than AsPh₃ (10.60)],²⁵ and the heats of protonation of the phosphorus atom in (Ph)₂PCH₂CH₂P(Ph)₂(H)+ (Δ H_{HP} = -20.2 kcal/mol) which is 12.0 kcal/mol more basic than the As atom in (Ph)₂AsCH₂CH₂P(Ph)₂(H)+ (Δ H_{HAs} = -8.2 kcal/mol).²⁶ Despite the large differences in PPh₃ and AsPh₃ basicities, other complexes containing these ligands also have similar basicities. Thus, *cis*-Mo(CO)₂(dppe)₂ (Δ H_{HM} = -27.4 kcal/mol; dppe = Ph₂PCH₂CH₂PPh₂) is only 3.6 kcal/mol (1.8 kcal/mol per As donor) more basic than *cis*-Mo(CO)₂(arphos)₂ (Δ H_{HM} = -23.8 kcal/mol; arphos = Ph₂AsCH₂CH₂PPh₂),⁷ and Fe(CO)₃(dppe) (Δ H_{HM} = -23.2 kcal/mol) is only 0.6 kcal/mol more basic than Fe(CO)₃(arphos) (Δ H_{HM} = -22.6 kcal/mol).⁶ Therefore, it appears that arsenic donor ligands are a better donors in metal complexes than one would expect based on the basicities of the free arsine ligands.

When PPh₃ in CpIr(PPh₃)(H)₂ is substituted by P(OPh)₃ to give CpIr[P(OPh)₃](H)₂, the basicity of the metal decreases by 7.8 kcal/mol. This large difference in basicities is illustrated by the K_{eq} in eq 8. Assuming

$$CpIr[P(OPh)_{3}](H)_{3}^{+} + CpIr(PPh_{3})(H)_{2} \xrightarrow{K_{eq}} CpIr[P(OPh)_{3}](H)_{2} + CpIr(PPh_{3})(H)_{3}^{+} (8)$$

9H⁺ 7 9 7H⁺

 $\Delta S^{\circ} \cong 0$ e.u., the equilibrium constant for eq 8 is 5.3 x 10⁵. Norton and coworkers observed a similar difference (10⁴) between the basicities of $Co(CO)_3(PPh_3)^-$ and $Co(CO)_3[P(OPh)_3]^-$,²⁷ whose protonated forms have pK_a values in acetonitrile of 15.4 and 11.4, respectively. The large decrease in basicity when a PPh₃ ligand is substituted by P(OPh)₃ is consistent with the lower pK_a value of free P(OPh)₃ (-2.01)^{23a} as compared with that of PPh₃ (2.73).^{23a}

Comparisons of Basicities (ΔH_{HM}) of Complexes with the Isoelectronic Cp and (PR₃)₂H Ligand Sets

Both the Cp ligand and the $(PR_3)_2(H)$ group of ligands contribute five electrons (using the neutral-ligand formalism) to a metal center; two examples of analogous Cp and (PR₃)₂H complexes are CpIr(PPh₃)(CO) and $(PPh_3)_2(H)Ir(PPh_3)(CO)$ (10). With the goal of predicting basicities of related complexes, we asked if there is a quantitative and predictable difference between Cp compounds and their $(PR_3)_2(H)$ analogs. In the comparisons listed in Table II, where the formal oxidation state of the metal is the same, substitution of the Cp ligand in CpIr(PPh₃)(CO) ($\Delta H_{HM} = -30.1 \text{ kcal/mol})^4$ with $(PPh_3)_2(H)$ to give $(PPh_3)_2(H)Ir(PPh_3)(CO) (\Delta H_{HM} = -38.8 \text{ kcal/mol})$ increases the basicity of the iridium by 8.7 kcal/mol. Since PPh₂Me is more basic than PPh₃, it is expected that substitution of the Cp ligand by the $(PPh_2Me)_2(H)$ group would result in an even greater increase in basicity than in the iridium system; however, replacement of the Cp ligand in $CpOs(PPh_2Me)_2H$ (ΔH_{HM} = -39.2 kcal/mol)⁹ by the (PPh₂Me)₂(H) group to give (PPh₂Me)₂(H)Os(PPh₂Me)- $_{2}(H)$ (ΔH_{HM} = -38.8 kcal/mol) decreases the basicity of the metal center by 0.4 kcal/mol.

When a Cp* ligand (Cp* = C₅Me₅), which is more basic than Cp (Cp = C₅H₅), in Cp*₂Ru (Δ H_{HM} = -19.0 kcal/mol)⁷ is replaced by the (PPh₃)₂(H) group to give Cp*Ru(PPh₃)₂(H) (Δ H_{HM} = -35.2 kcal/mol), the basicity of the metal increases by 16.2 kcal/mol. In the Cp*₂Os complex (Δ H_{HM} = -26.6 kcal/mol),⁷

replacement of two Cp* ligands by two (PPhMe₂)₂(H) groups to give (PPhMe₂)₂(H)Os(PPhMe₂)₂(H) (Δ H_{HM} = -43.3 kcal/mol) increases the basicity of the metal center by 16.7 kcal/mol; therefore, each (PPhMe₂)₂(H) group increases the basicity by 8.4 kcal/mol. As the basicities of the phosphines in (PR₃)₂(H)Os(PR₃)₂(H) decrease, the basicity of the metal also decreases; thus, the substitution of each Cp* ligand in Cp*₂Os by different (PR₃)₂(H) ligand sets to give (PR₃)₂(H)Os(PR₃)₂H causes the metal basicity to increase by 3.8 kcal/mol (PR₃ = P(OEt)₃) to 8.4 kcal/mol (PR₃ = PPhMe₂), (Table II). These studies indicate that the replacement of Cp or Cp* by (PR₃)₂(H) usually increases the basicity of the metal, but the magnitude of the increase is not reliably predictable.

Table II. Effect of Cp and (PR₃)₂(H) Isoelectronic Ligand Sets on Metal Basicity

	∆∆HHM per ligand		
less basic compound	set, kcal/mol	more basic compound	
CpIr(PPh3)(CO) ^b	8.7	(PPh3)2(H)Ir(PPh3)(CO)	
(PPh2Me)2(H)Os(PPh2Me)2H	0.4	CpOs(PPh2Me)2H ^e	
Cp*Ru Cp* C	16.2	Cp*Ru(PPh3)2(H) ^f	
Cp*OsCp*d	8.4	(PPhMe2)2(E)Os(PPhMe2)2(E)	
Cp*OsCp*d	6.1	(PPh2Me)2(ElOs(PPh2Me)2(El)	
Cp*OsCp*d	5.3	(PPh(OEt)2)2(E)Os(PPh(OEt2)2(E)	
Cp*OsCp*d	3.8	(P(OEt)3)2(E)Os(P(OEt)3)2(E)	
^a Ligands in bold type are the Cp' and (PR ₂) ₂ (H) sets that are being compared.			

 $[\Delta\Delta H_{HM} = \Delta H_{HM} \text{ (less basic compound)} - \Delta H_{HM} \text{ (more basic compound)]/[number of ligand sets]. } ^b \Delta H_{HM} = -30.1 (\pm 0.2) \text{ kcal/mol, ref. 4.}$ $c \Delta H_{HM} = -19.0 (\pm 0.1) \text{ kcal/mol, ref. 7. } ^d \Delta H_{HM} = -26.6 (\pm 0.2) \text{ kcal/mol, ref. 7.}$ $e \Delta H_{HM} = -39.2 (\pm 0.3) \text{ kcal/mol, ref. 9. } ^f \Delta H_{HM} = -35.2 (\pm 0.2) \text{ kcal/mol, ref. 9b.}$

CONCLUSIONS

Comparisons of (H)₄Os(PR₃)₃ vs. (H)₂Os(PR₃)₄ and CpIr(PPh₃)(H)₂ vs. CpIr(PPh₃)(CO) establish that the basicity (Δ H_{HM}) of the metal increases with its isoelectronic ligands in the order: (H)₂ < CO < PR₃. Despite the strong donor ability of an H⁻ ligand as compared with a halide (X⁻), two H ligands reduce the basicity of the metal more than a CO ligand. When substituting a Cp or Cp^{*} ligand with an isoelectronic (PR₃)₂(H) ligand set, the basicity (Δ H_{HM}) of the metal usually increases, but the magnitude of the increase depends greatly on the ligands and the metal. In the series of complexes (H)₂Os(PR₃)₄, the basicity of the metal increases with PR₃ in the order: P(OEt)₃ < PPh(OEt)₂ < PPh₂Me < PPhMe₂. For the CpIr(ER₃)(H)₂ complexes, the basicity of the metal increases with the ER₃ ligand as follows: P(OPh)₃ << AsPh₃ ~ PPh₃. It is surprising that the basicities of the AsPh₃ and PPh₃ complexes are nearly the same despite the fact that PPh₃ is a much stronger σ -donor than AsPh₃.

Acknowledgment

We thank the National Science Foundation (Grant No. CHE-9103948) for support of this work. The loan of OsO4 and IrCl₃•xH₂O from Johnson Matthey is greatly appreciated.

REFERENCES

- (a) Feltham, R. D.; Brant, P. J. Am. Chem. Soc. 1982, 104, 641. (b) Chatt, J. Coord. Chem. Rev. 1982, 43, 337. (c) Timney, J. A. Inorg. Chem. 1979, 18, 2502. (d) Bursten, B. E.; Green, M. R. Prog. Inorg. Chem. 1988, 36, 393. (e) Duff, C. M.; Heath, G. A. Inorg. Chem. 1991, 30, 2528. (f) Lever, A. B. P. Inorg. Chem. 1990, 29, 1271. (g) Rahman, M. M.; Liu, H. Y.; Prock, A.; Giering, W. P. Organometallics 1987, 6, 650. (h) Prock, A.; Giering, W. P.; Green, J. E.; Meirowitz, R. E. Hoffman, S. L.; Woska, D. C.; Wilson, M.; Chang, R.; Chen, J.; Magnuson, R. H.; Eriks, K. Organometallics 1991, 10, 3479. (i) Araghizadeh, F.; Branan, D. M.; Hoffman, N. W.; Jones, J. H.; McElroy, E. A.; Miller, N. C.; Ramage, D. L.; Salazar, A. B.; Young, S. H. Inorg. Chem. 1988, 27, 3752. (j) Morris, R. J. Inorg. Chem. 1992, 31, 1471. (k) Poë, A. J. Pure Appl. Chem. 1988, 60, 1209. (l) Heath, G. A.; Humphrey, D. G. J. Chem. Soc., Chem. Comm. 1991, 1668.
- (2) (a) Kristjánsdóttir, S. S.; Norton, J. in Transition -Metal Hydrides: Recent Advanced in Theory and Experiment; Dedieu, A., Ed.; VCH: New York, in press. (b) Kristjánsdóttir, S. S.; Moody, A. E.; Werberg, R. T.; Norton, J. R. Organometallics 1988, 7, 1983. (c) Moore, E. J.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1986, 108, 2257. (d) Jordan, R. F.; Norton, J. R. J. Am. Chem. Soc. 1982, 104, 1255. (e) Tilset, M. J. Am. Chem. Soc. 1992, 114, 2740-2741. (f) Ryan, O. B.; Tilset, M.; Parker, V. D. J. Am. Chem. Soc. 1990, 112, 2618. (g) Ryan, O. B.; Tilset, M.; Parker, V. D. Organometallics 1991, 10, 298. (h) Jia, G.; Morris, R.

H. J. Am. Chem. Soc. 1991, 113, 875. (i) Jia, G.; Lough, A. J.; Morris, R.
H. Organometallics 1992, 11, 161.

- (3) Bush, R. C.; Angelici, R. J. Inorg. Chem. 1988, 27, 681.
- (4) Sowa, Jr., J. R.; Zanotti, V.; Facchin, G.; Angelici, R. J. J. Am. Chem.
 Soc. 1991, 113, 9185.
- (5) Sowa, Jr., J. R.; Angelici, R. J. Inorg. Chem., accepted for publication.
- Sowa, Jr., J. R.; Zanotti, V.; Facchin, G.; Angelici, R. J. J. Am. Chem.
 Soc. 1992, 114, 160.
- (7) Sowa, Jr., J. R.; Bonanno, J. B.; Zanotti, V.; Angelici, R. J. Inorg.
 Chem. 1992, 31, 1370.
- (8) Sowa, Jr., J. R.; Angelici, R. J. J. Am. Chem. Soc. 1991, 113, 2537.
- (a) Rottink, M. K.; Angelici, R. J. J. Am. Chem. Soc., 1992, 114, 8296. (b)
 Rottink, M. K.; Angelici, R. J., submitted for publication.
- (10) (a) Bell, B.; Chatt, J.; Leigh, G. J. J. Chem. Soc., Dalton Trans. 1973, 997. (b) Bruno, J. W.; Huffman, J. C.; Green, M. A.; Zubkowski, J. D.; Hatfield, W. E.; Caulton, K. E. Organometallics 1990, 9, 2556.
- (11) Albertin, G.; Antoniutti, S.; Bordignon, E. J. Chem. Soc., Dalton Trans.
 1989, 2353. (b) Amendola, P.; Antoniutti, S.; Albertin, G.; Bordignon, E.
 Inorg. Chem. 1990, 29, 320.
- (12) Douglas, P. G.; Shaw, B. L. J. Chem. Soc. A 1970, 334.
- (13) Heinekey, D. M.; Millar, J. M.; Koetzle, T. F.; Payne, N. G.; Zilm, K. W.
 J. Am. Chem. Soc. 1990, 112, 909.
- (14) (a) Crabtree, R. H.; Hamilton, D. G. Adv. Organomet. Chem. 1988, 28, 299. (b) Cotton, F. A.; Luck, R. L. J. Am. Chem. Soc. 1989, 111, 5757. (c) Cotton, F. A.; Luck, R. L. Inorg. Chem. 1989, 28, 2181. (d) Crabtree, R.

H.; Acc. Chem. Res. 1990, 23, 95. (e) Desrosiers, P. J.; Cai, L.; Lin, Z.; Richards, R.; Halpern, J. J. Am. Chem. Soc. 1991, 113, 4173.

- (15) (a) Johnson, T. J.; Huffman, K. G.; Caulton, K. G.; Jackson, S. A.;
 Eisenstein, O. Organometallics 1989, 8, 2073. (b) Bruno, J. W.; Huffman,
 J. C.; Caulton, K. G. J. Am. Chem. Soc. 1984, 106, 1663.
- (16) (a) Seidel, A. R.; Newmark, R. A.; Howells, R. D. Inorg. Chem. 1988, 27, 2473. (b) Bird, P.; Harrod, J. F.; Than, K. A. J. Am. Chem. Soc. 1974, 96, 1222.
- (17) Seidel, A. R.; Newmark, R. A.; Pignolet, L. H. Inorg. Chem. 1986, 25, 3412.
- (18) Hart, D. W.; Bau, R.; Koetzle, T. F. J. Am. Chem. Soc. 1977, 99, 7557.
- (19) Heinekey, D. M.; Payne, N. G.; Schulte, G. K. J. Am. Chem. Soc. 1988, 110, 2303.
- (20) (a) La Placa, S. J.; Ibers, J. A. J. Am. Chem. Soc. 1963, 85, 3500. (b)
 Bird, P.; Harrod, J. F.; Than, K. A.; J. Am. Chem. Soc. 1974, 96, 1222.
- (21) Lange's Handbook of Chemistry, 13th ed.; Dean, J. A., Ed.; McGraw-Hill: New York, 1985.
- (22) Ryan, O. B.; Tilset, M.; Parker, V. D. Organometallics 1991, 10, 298.
- (23) (a) Liu, H.-Y.; Eriks, K.; Prock, A.; Giering, W. P. Organometallics
 1990, 9, 1758. (b) Tolman, C. H. Chem. Rev. 1977, 77, 313. (c) Bartik, T.;
 Himmler, T.; Schultze, H.-G.; Seevogel, K. J. Organomet. Chem. 1984, 272, 29.
- (24) Durand, M.; Jovany, C.; Jugie, G.; Elegant, L.; Gal, J.-F. J. Chem. Soc., Dalton Trans. 1977, 57.
- (25) Kolling, O. W.; Mawdsley, E. A. Inorg. Chem. 1970, 9, 408.

- (26) Sowa, Jr., J. R.; Angelici, R. J. Inorg. Chem. 1991, 30, 3534.
- (27) Moore, E. J.; Sullivan, J. M.; Norton, J. R. J. Am. Chem. Soc. 1986, 108, 2257.

PAPER III. CALORIMETRIC STUDIES OF THE HEATS OF PROTONATION OF THE DANGLING PHOSPHORUS IN η^1 -Ph₂PCH₂PPh₂ COMPLEXES OF CHROMIUM, MOLYBDENUM, AND TUNGSTEN

.

ABSTRACT

Titration calorimetry has been used to determine the heats of protonation (Δ H_HP) of M(CO)₅(η^1 -dppm) (M = Cr, Mo, W) and fac- $M(CO)_3(N N)(\eta^1$ -dppm) (M = Mo, N N = bipy, phen; M = W, N N = bipy) complexes with CF₃SO₃H in 1,2-dichloroethane solvent at 25.0 °C. Spectroscopic studies show that protonation occurs at the uncoordinated phosphorus atom of the η^1 -coordinated dppm (Ph₂PCH₂PPh₂) ligand. For dppm, its mono-protonated form (dppmH⁺), and these complexes, the basicity (ΔH_{HP}) of the dangling phosphorus increases from -14.9 kcal/mol to -23.1 kcal/mol in the order: dppmH⁺ < Cr(CO)₅(η^1 -dppm) < Mo(CO)₅(η^1 -dppm) < W(CO)₅(η^{1} -dppm) < dppm \leq fac-Mo(CO)₃(η^{2} -bipy)(η^{1} -dppm) < fac-Mo(CO)₃(η^{2} phen)(η^1 -dppm) \approx fac-W(CO)₃(η^2 -bipy)(η^1 -dppm). In this series, H⁺ is more electron-withdrawing than $M(CO)_5$ (M = Cr, Mo, W); $M_0(CO)_3(\eta^2$ -phen) and $W(CO)_3(\eta^2$ -bipy) actually enhance the basicity of the dangling phosphorus as compared with dppm itself. The basicity (ΔH_{HM}) of fac-W(CO)₃(η^2 bipy)(PPh₂Me), which protonates at the metal center to give a seven coordinate complex, is -18.8 kcal/mol. Thus, the basicity of the dangling phosphorus atom in fac-W(CO)₃(η^2 -bipy)(η^2 -dppm) is approximately 4.3 kcal/mol more basic than the metal center.
INTRODUCTION

Bidentate phosphine ligands have been widely used as ligands in transition metal complexes.¹ In this research group, we have explored the effects of bidentate ligand structure on the basicity of the metal in the complexes $Fe(CO)_3(P P)$,² $M(CO)_2(P P)_2$ (M = Cr, Mo, W),³ CpRu(P P)H (Cp = C₅H₅)⁴ as measured by their heats of protonation with CF₃SO₃H in 1,2dichloroethane solvent at 25.0 °C (eq 1). In several of these complexes,^{2,3} the chelate ring size dramatically alters the basicity of the metal center.

$$ML_{n} + CF_{3}SO_{3}H \xrightarrow{DCE} HML_{n}^{+}CF_{3}SO_{3}; \Delta H_{HM}$$
(1)

In the present study we sought to understand the effect of a metal complex ML_x on the basicity of the dangling phosphorus of an η^1 -coordinated

$$L_{x}M-PP + CF_{3}SO_{3}H - \frac{DCE}{25.0 \circ C} - L_{x}M-PPH^{+}CF_{3}SO_{3}; \Delta H_{HP}$$
 (2)

bidentate phosphine ligand by determining heats of protonation (ΔH_{HP}) for reactions of the type in eq 2. Previously, it was established⁵ that free bidentate ligands Ph₂P(CH₂)_nPPh₂ are protonated in two steps (eqs 3 and 4), and these heats of protonation (ΔH_{HP1} and ΔH_{HP2}) may be substantially different from each other. The largest difference was for dppm (Ph₂PCH₂PPh₂), whose ΔH_{HP1} was -22.0 kcal/mol but ΔH_{HP2} was only -14.9 kcal/mol. Thus, protonation of one phosphorus decreases the basicity of the other phosphorus by 7.1 kcal/mol, a large change in donor ability.

$$Ph_{2}P Ph_{2} + CF_{3}SO_{3}H \xrightarrow{DCE}_{25.0 \circ C} Ph_{2}P Ph_{2}^{+}CF_{3}SO_{3}^{-}; \Delta H_{HP1}$$
(3)

$$Ph_{2}P Ph_{2}^{+}CF_{3}SO_{3}^{-} + CF_{3}SO_{3}H \xrightarrow{DCE}_{25.0 \circ C} Ph_{2}P Ph_{2}^{+2}(CF_{3}SO_{3}^{-})_{2}; \Delta H_{HP2}$$
(4)

$$H H H H$$

Transition metal complexes, like H⁺, would presumably act as Lewis acids when η^{1} -coordinated to dppm and thereby affect the ΔH_{HP} of the dangling phosphorus. In this investigation, we describe the effects of M(CO)₅ (M = Cr, Mo, W) and the more electron-rich M(CO)₃(η^{2} -bipy) (M = Mo, W) and Mo(CO)₃(η^{2} -phen), where bipy is 2,2'-bipyridyl and phen is 1,10phenanthroline, complexes on the basicity (ΔH_{HP}) of the dangling phosphorus in their η^{1} -dppm complexes. Thus, ΔH_{HP} values for reactions (5) and (6) were determined under the same conditions as for reactions (3) and (4).

Another reason to measure ΔH_{HP} for reactions (5) and (6) is to estimate the donor ability of the phosphorus atoms in a dppm chelate complex. Previously,⁶ we correlated heats of protonation (ΔH_{HM}) of metal complexes with the basicities (ΔH_{HP}) of their phosphine ligands. For chelating ligands such as dppm, one might assume that the measure of donor ability of the Patom to be used in these correlations is ΔH_{HP1} . However, it seems likely that the coordination of one P-atom (P_B in Chart I (a)) is going to affect the donor ability of the other (P_A) by withdrawing electron-density through the CH₂ link. An estimate of this effect is ΔH_{HP} for P_A in a complex of type (b) in Chart I.

Chart I

 P_{B} R_{2} (a)

Thus, ΔH_{HP} values for reactions (5) and (6) provide an estimate of the effect that coordination through both P-atoms in dppm has on the donor ability of each phosphorus. The P-donor ability of chelates with longer hydrocarbon links, e.g. Ph₂PCH₂CH₂PPh₂ (dppe), will probably be less affected than dppm by coordination of the other end. This is evident from the much smaller difference (2.6 kcal/mol) between ΔH_{HP1} (-22.8 kcal/mol) and ΔH_{HP2} (-20.2 kcal/mol) for dppe (eqs 3 and 4).⁵

In order to compare the basicity of the metal center with that of the dangling phosphorus in eq 6, we also measured the heat of protonation (ΔH_{HM}) of *fac*-W(CO)₃(η^2 -bipy)(PPh₂Me) as shown in eq 7.

EXPERIMENTAL SECTION

General Procedures

All preparative reactions and solvent purifications were carried out under N₂ atmosphere using standard Schlenk techniques. Hexanes and CH₂Cl₂ were refluxed over CaH₂ and then distilled. Xylenes were deoxygenated with N₂, then stored over molecular sieves for 12 h before use; the 1,2-dichloroethane (99.8%, HPLC Grade purchased from Aldrich) was distilled under argon from P₄O₁₀ immediately prior to use. Deuterated solvents (CD₂Cl₂ and CDCl₃) were stored over molecular sieves in air. The CF₃SO₃H was purchased from 3M Co. and purified as previously described.⁷ The IR spectra were recorded on a Bio-Rad FTS-7 FTIR spectrometer, ¹H NMR spectra were obtained on a Nicolet-NT 300 MHz instrument with TMS (δ = 0.00 ppm) as the internal reference, and ³¹P(¹H) NMR spectra were recorded on a Varian VXR-300 spectrometer using 85% phosphoric acid (δ = 0.00 ppm) as the external standard.

The complexes W(CO)₄(η^2 -bipy),⁸ Cr(CO)₅(η^1 -dppm) (1),⁹ Mo(CO)₅(η^1 -dppm) (2),⁹ Mo(CO)₃(η^2 -bipy)(η^1 -dppm) (4),¹⁰ Mo(CO)₃(η^2 -phen)(η^1 -dppm) (5)¹⁰ and W(CO)₃(η^2 -bipy)(η^1 -dppm) (6)¹¹ were prepared as previously described. Ligand abbreviations are bipy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppm = Ph₂PCH₂PPh₂.

Synthesis of W(CO)₅(η^1 -dppm) (3)

The complex W(CO)₅(η^1 -dppm) (3) was prepared in a manner similar to that used by Basolo et al.,¹² by vigorously stirring 250 mg (0.71 mmol) of

104

W(CO)₆ and 79 mg (0.71 mmol) of Me₃NO • 2H₂O in 20 mL of CH₂Cl₂ for 15 minutes. To the yellow solution was added 273 mg (0.71 mmol) of dppm; this solution was stirred at room temperature for 3 days with a slow flow of N₂ through the solution. The air-stable white precipitate was filtered off and washed with MeOH, then recrystallized at -20 °C from a minimal amount of CH₂Cl₂ layered with MeOH. Pure, colorless crystals of W(CO)₅(η^1 -dppm) were obtained (210 mg) in 42% yield. The spectral data listed below agree with the previously reported literature values.⁹

Synthesis of fac-W(CO)₃(η^2 -bipy)(PPh₂Me) (7)

The complex fac-W(CO)₃(η^2 -bipy)(PPh₂Me) (7) was prepared by refluxing 252 mg (0.56 mmol) of W(CO)₄(η^2 -bipy)⁸ with 0.104 mL (0.56 mmol) of PPh₂Me in 20 mL of xylenes for 5 h. The precipitate was filtered from the cooled solution and washed with copious amounts of hexanes. The air-stable fine dark purple crystals of fac-W(CO)₃(η^2 -bipy)(PPh₂Me) (194 mg, 56% yield) were collected and dried in vacuo. Spectral data are listed below.

Protonation Reactions

Compounds 1-7 were protonated for spectroscopic characterization by dissolving ~5 mg of the complex in 0.5 mL of CD_2Cl_2 (or $CDCl_3$) in a 5 mm NMR tube under N₂. To the solution was added 1 equiv of CF_3SO_3H by microliter syringe through a rubber septum. Spectroscopic data collected at room temperature are listed below for compounds 1-7 and 1H⁺-7H⁺. Compounds 1-6 have been previously characterized; the spectroscopic data given in the literature are very similar to those listed below. $Cr(CO)_5(\eta^{1}-dppm)$ (1): ¹H NMR (CD_2Cl_2) δ 7.1-7.3 (m, Ph), 3.28 (dd, ²J_{PH} = 6.9 and 0.6 Hz, CH₂). ³¹P (¹H) NMR (CD_2Cl_2) δ 47.2 (d, ²J_{PP} = 94 Hz, Cr-P_I), -25.8 (d, ²J_{PP} = 95 Hz, P_{II}). IR (CH₂Cl₂) v(CO) 2067(w), 1939(s).

 $Cr(CO)_5[Ph_2PCH_2P(Ph)_2(H)]+CF_3SO_3- (1H+CF_3SO_3-): ^{1}H NMR (CD_2Cl_2) \delta$ 7.1-7.3 (m, Ph), 4.2 (br s, CH₂). ³¹P (¹H) NMR (CD₂Cl₂) δ 52.3 (s, Cr-P_I), 4.2 (br s, P_{II}). IR (CD₂Cl₂) v(CO) 2067(w) 1939(s).

 $Mo(CO)_{5}(\eta^{1}-dppm) (2): \ ^{1}H \ NMR \ (CD_{2}Cl_{2}) \ \delta \ 7.1-7.3 \ (m, Ph), \ 3.22 \ (dd, \ ^{2}J_{PH} = 8.1 \ and \ 2.7 \ Hz, \ CH_{2}). \ ^{31}P \ (^{1}H) \ NMR \ (CD_{2}Cl_{2}) \ \delta \ 28.1 \ (d, \ ^{2}J_{PP} = 114 \ Hz, \ Mo-P_{I}), \ -24.9 \ (d, \ ^{2}J_{PP} = 114 \ Hz, \ P_{II}). \ IR \ (CH_{2}Cl_{2}) \ v(CO) \ 2072(w), \ 1945(s).$

$$\label{eq:model} \begin{split} & Mo(CO)_5 [Ph_2PCH_2P(Ph)_2(H)]^+ CF_3 SO_3^- (2H^+ CF_3 SO_3^-): \ ^1H \ NMR \ (CD_2 Cl_2) \ \delta \\ & 7.1\text{-}7.3 \ (m, Ph), \ 4.2 \ (br \ s, \ CH_2). \ ^{31}P \ \{^1H\} \ NMR \ (CD_2 Cl_2) \ \delta \ 31.3 \ (d, \ ^2J_{PP} = 9.2 \ Hz, \\ & Mo\ P_I), \ 6.8 \ (br \ s, \ P_{II}). \ IR \ (CD_2 Cl_2) \ \nu(CO) \ 2072 (w), \ 1945 (s). \end{split}$$

 $W(CO)_{5}(\eta^{1}\text{-}dppm) (3): \ ^{1}\text{H NMR} (CDCl_{3}) \ \delta \ 7.1-7.3 \ (m, Ph), \ 3.31 \ (dd, \ ^{2}J_{PH} = 8.4 \ and \ 2.1 \ Hz, \ CH_{2}). \ ^{31}\text{P} \ \{^{1}\text{H}\} \ \text{NMR} \ (CDCl_{3}) \ \delta \ 10.4 \ (d, \ ^{2}J_{PP} = 106 \ \text{Hz}, \ ^{1}J_{PW} = 246 \ \text{Hz}, \ W\text{-}P_{I}), \ -24.3 \ (d, \ ^{2}J_{PP} = 106 \ \text{Hz}, \ P_{II}). \ \text{IR} \ (CH_{2}Cl_{2}) \ v(CO) \ 2071(w), \ 1934(s).$

 $\label{eq:WCO} W(CO)_5 [Ph_2PCH_2P(Ph_2)(H)] + CF_3SO_3 - (3H + CF_3SO_3 -): \ ^1H \ NMR \ (CDCl_3) \ \delta$ 7.2-7.4 (m, Ph), 4.5 (br s, CH_2). \ ^{31}P \ (^1H) \ NMR \ (CDCl_3) \ 11.4 \ (br s, P_I), 7.7 \ (br s, P_I), 10.2 \ (b

 $Mo(CO)_{3}(\eta^{2}-bipy)(\eta^{1}-dppm) (4): \ ^{1}H \ NMR \ (CD_{2}Cl_{2}) \ \delta \ 9.1 \ (d, \ ^{2}J_{HH} = 6.5 \ Hz, \ 2H), \ 8.8 \ (d, \ ^{2}J_{HH} = 5.7 \ Hz, \ 2H), \ 8.1 \ (d, \ ^{2}J_{HH} = 8.1 \ Hz, \ 2H), \ 7.0-7.8 \ (m, \ Ph), \ 2.64 \ (dd, \ ^{2}J_{PH} = 4.4 \ and \ 2.1 \ Hz, \ CH_{2}). \ \ ^{31}P \ (^{1}H) \ NMR \ (CD_{2}Cl_{2}) \ \delta \ 47.2 \ (d, \ ^{2}J_{PP} = 71 \ Hz, \ Mo-P_{I}), \ -27.9 \ (d, \ ^{2}J_{PP} = 71 \ Hz, \ P_{II}). \ IR \ (CH_{2}Cl_{2}) \ v(CO) \ 1911(s), \ 1824(m), \ 1754(m).$

 $Mo(CO)_{3}(\eta^{2}-bipy)[Ph_{2}PCH_{2}P(Ph)_{2}(H)]+CF_{3}SO_{3}-(4H+CF_{3}SO_{3}-): \ ^{1}H NMR$ $(CD_{2}Cl_{2}) \delta 9.1 (d, ^{2}J_{HH} = 5.9 Hz, 2H), 8.9 (d, ^{2}J_{HH} = 5.9 Hz, 2H), 8.1 (d, ^{2}J_{HH} = 5.9 Hz, 2H), 8.1 (d, ^{2}J_{HH} = 5.9 Hz, 2H), 8.1 (d, ^{2}J_{HH} = 5.9 Hz, ^{2}H), 8.1 (d, ^{2}H_{H} = 5$

8.0 Hz, 2H) 7.1-7.8 (m, Ph), 4.0 (br s, CH₂). ³¹P {¹H} NMR (CD₂Cl₂) δ 30.2 (d, ²J_{PP} = 17 Hz, Mo-P_I), 7.9 (d, ²J_{PP} = 17 Hz, P_{II}). IR (CD₂Cl₂) v(CO) 1911(s), 1824(m), 1754(m).

$$\begin{split} & \text{Mo}(\text{CO})_3(\eta^2\text{-phen})(\eta^1\text{-dppm}) \ \textbf{(5):} \ \ ^1\text{H NMR} \ (\text{CD}_2\text{Cl}_2) \ \delta \ 9.2 \ (d, \ ^2J_{\text{HH}} = 5 \ \text{Hz}, \\ & \text{2H}), \ 8.0 \ (d, \ ^2J_{\text{HH}} = 8.1 \ \text{Hz}, \ 2\text{H}), \ 6.7\text{-}7.4 \ (m, \ \text{Ph}), \ 2.66 \ (dd, \ ^2J_{\text{PH}} = 4.5 \ \text{and} \ 2.0 \ \text{Hz}, \\ & \text{CH}_2). \ \ ^3\text{1P} \ \{^1\text{H}\} \ \text{NMR} \ (\text{CD}_2\text{Cl}_2) \ \delta \ 28.7 \ (d, \ ^2J_{\text{PP}} = 70 \ \text{Hz}, \ \text{Mo}\text{-PI}), \ -27.6, \ (d, \ ^2J_{\text{PP}} = 70 \ \text{Hz}, \\ & \text{Hz}, \ P_{\text{II}}). \ \ \text{IR} \ (\text{CH}_2\text{Cl}_2) \ v(\text{CO}) \ 1906(\text{s}), \ 1826(\text{m}), \ 1781(\text{m}). \end{split}$$

$$\begin{split} & \text{Mo}(\text{CO})_3(\eta^2\text{-phen})[\text{Ph}_2\text{PCH}_2\text{P}(\text{Ph})_2(\text{H})]^+\text{CF}_3\text{SO}_3^- (5\text{H}^+\text{CF}_3\text{SO}_3^-): \ ^1\text{H} \text{ NMR} \\ & (\text{CD}_2\text{Cl}_2) \ \delta \ 9.1 \ (\text{d}, \ ^2\text{J}_{\text{HH}} = 4.8 \ \text{Hz}, \ 2\text{H}), \ 8.9 \ (\text{d}, \ ^2\text{J}_{\text{HH}} = 4.8 \ \text{Hz}, \ 2\text{H}), \ 8.2 \ (\text{d}, \ ^2\text{J}_{\text{HH}} = 7.5 \ \text{Hz}, \ 2\text{H}), \ 6.9\text{-}7.8 \ (\text{m}, \ \text{Ph}), \ 4.2 \ (\text{br s}, \ \text{CH}_2). \ \ ^{31}\text{P} \ ^{1}\text{H} \ \text{NMR} \ (\text{CD}_2\text{Cl}_2) \ \delta \ 32.1 \ (\text{d}, \ ^2\text{J}_{\text{PP}} = 17 \ \text{Hz}, \ \text{Mo}\text{-P}_{\text{I}}), \ 8.0 \ (\text{d}, \ ^2\text{J}_{\text{PP}} = 17 \ \text{Hz}, \ \text{P}_{\text{H}}). \ \text{IR} \ (\text{CD}_2\text{Cl}_2) \ \text{v}(\text{CO}) \ 1906(\text{s}), \ 1826(\text{m}), \ 1781(\text{m}). \end{split}$$

$$\begin{split} & \text{W(CO)}_{3}(\eta^{2}\text{-bipy})(\eta^{1}\text{-dppm}) \text{ (6): } ^{1}\text{H NMR (CD}_{2}\text{Cl}_{2}) \ \delta \ 9.2 \ (d, \ ^{2}J_{\text{HH}} = 5.7 \ \text{Hz}, \\ & \text{2H)}, \ 8.9 \ (d, \ ^{2}J_{\text{HH}} = 5.4 \ \text{Hz}, \ 2\text{H}), \ 8.1 \ (d, \ ^{2}J_{\text{HH}} = 8.4 \ \text{Hz}, \ 2\text{H}), \ 7.9 \ (t, \ ^{2}J_{\text{HH}} = 7.5 \ \text{Hz}, \\ & \text{2H)}, \ 7.0\text{-}7.5 \ (m, \ \text{Ph}), \ 2.22 \ (dd, \ ^{2}J_{\text{PH}} = 4.5 \ \text{and} \ 2.1 \ \text{Hz}, \ \text{CH}_{2}). \ \ ^{31}\text{P} \ (^{1}\text{H}) \ \text{NMR} \\ & (\text{CD}_{2}\text{Cl}_{2}) \ \delta \ 20.0 \ (d, \ ^{2}J_{\text{PP}} = 66 \ \text{Hz}, \ \text{W-PI}), \ -27.8 \ (d, \ ^{2}J_{\text{PP}} = 66 \ \text{Hz}, \ \text{PI}). \ \ \text{IR} \ (\text{CH}_{2}\text{Cl}_{2}) \\ & \nu(\text{CO}) \ 1906(\text{s}), \ 1822(\text{m}), \ 1774(\text{m}). \end{split}$$

$$\begin{split} & \text{W(CO)}_{3}(\eta^{2}\text{-bipy})[\text{Ph}_{2}\text{PCH}_{2}\text{P(Ph)}_{2}(\text{H})]^{+}\text{CF}_{3}\text{SO}_{3}^{-}(\mathbf{6H^{+}\text{CF}}_{3}\mathbf{SO}_{3}^{-}): \ ^{1}\text{H NMR} \\ & (\text{CD}_{2}\text{Cl}_{2}) \ \delta \ 9.2 \ (\text{d}, \ ^{2}\text{J}_{\text{HH}} = 6.3 \ \text{Hz}, \ 2\text{H}), \ 8.8 \ (\text{d}, \ ^{2}\text{J}_{\text{HH}} = 5.1 \ \text{Hz}, \ 2\text{H}), \ 8.1 \ (\text{d}, \ ^{2}\text{J}_{\text{HH}} = 8.1 \ \text{Hz}, \ 2\text{H}), \ 7.0 \ 7.9 \ (\text{m}, \ \text{Ph}), \ 4.2 \ (\text{br s}, \ \text{CH}_{2}). \ \ ^{31}\text{P} \ ^{1}\text{H} \ \text{NMR} \ (\text{CD}_{2}\text{Cl}_{2}) \ \delta \ 19.9 \ (\text{d}, \ ^{2}\text{J}_{\text{PP}} = 12 \ \text{Hz}, \ \text{W-P}_{\text{I}}), \ 8.7 \ (\text{br d}, \ ^{2}\text{J}_{\text{PP}} = 12 \ \text{Hz}, \ \text{P}_{\text{II}}). \ \text{IR} \ (\text{CD}_{2}\text{Cl}_{2}) \ 1906(\text{s}), \ 1822(\text{m}), \ 1774(\text{m}). \end{split}$$

$$\begin{split} & \text{W(CO)}_{3}(\eta^{2}\text{-bipy})(\text{PPh}_{2}\text{Me}) \ (7): \ \ ^{1}\text{H NMR} \ (\text{CD}_{2}\text{Cl}_{2}) \ \delta \ 8.9 \ (\text{d}, \ ^{2}\text{J}_{\text{HH}} = 5.7 \ \text{Hz}, \\ & \text{2H}), \ 7.8 \ (\text{d}, \ ^{2}\text{J}_{\text{HH}} = 8.1 \ \text{Hz}, \ 2\text{H}), \ 7.2\text{-}7.0 \ (\text{m}, \ \text{Ph}), \ 1.52 \ (\text{d}, \ ^{2}\text{J}_{\text{PH}} = 6 \ \text{Hz}, \ 3\text{H}, \ \text{CH}_{3}). \\ & \text{IR} \ (\text{CH}_{2}\text{Cl}_{2}) \ v(\text{CO}) \ 1906(\text{s}), \ 1810(\text{m}), \ 1782(\text{m}). \end{split}$$

 $\begin{array}{l} W({\rm CO})_{3}(\eta^{2}\text{-bipy})({\rm PPh}_{2}{\rm Me})({\rm H})^{+}{\rm CF}_{3}{\rm SO}_{3}^{-}\ (7{\rm H}^{+}{\rm CF}_{3}{\rm SO}_{3}^{-}); \ ^{1}{\rm H}\ {\rm NMR}\ ({\rm CD}_{2}{\rm Cl}_{2})\ \delta\\ 8.8\ ({\rm d},\ ^{2}{\rm J}_{\rm HH}=5.4\ {\rm Hz},\ 2{\rm H}),\ 8.4\ ({\rm d},\ ^{2}{\rm J}_{\rm HH}=8.1\ {\rm Hz},\ 2{\rm H}),\ 8.2\ ({\rm t},\ ^{2}{\rm J}_{\rm HH}=7.8\ {\rm Hz},\ 2{\rm H}),\ 7.6\ ({\rm t},\ ^{2}{\rm J}_{\rm HH}=6.3\ {\rm Hz},\ 2{\rm H}),\ 7.43\ ({\rm t},\ ^{2}{\rm J}_{\rm HH}=7.5\ {\rm Hz},\ 2{\rm H}),\ 7.3\ ({\rm t},\ ^{2}{\rm J}_{\rm HH}=7.5\ {\rm Hz},\ 4{\rm H}),\ 7.0\ ({\rm t},\ ^{2}{\rm J}_{\rm HH}=10.5\ {\rm Hz},\ 4{\rm H}),\ 1.65\ ({\rm d},\ ^{2}{\rm J}_{\rm PH}=7.2\ {\rm Hz},\ 3{\rm H},\ {\rm CH}_{3}),\ -3.0\ ({\rm d},\ ^{2}{\rm J}_{\rm PH}=30.3\ {\rm Hz},\ 1{\rm H},\ W-{\rm H}).\ {\rm IR}\ ({\rm CD}_{2}{\rm Cl}_{2})\ v({\rm CO})\ 2021({\rm s}),\ 1935({\rm s}),\ 1920({\rm s}). \end{array}$

Calorimetric Studies

The heats of protonation of complexes 1-7 were measured under an argon atmosphere using a Tronac Model 458 isoperibol calorimeter as originally described⁷ and then modified.^{6a} A three minute titration period was used for all complexes and was preceded and followed by heat capacity calibrations. During the titration period, approximately 1.2 mL of a 0.1 M CF₃SO₃H solution (standardized to a precision of ± 0.0002 M) in DCE solvent was added at a constant rate to 50 mL of a 2.6 mM solution of the complex (5-10% excess) in DCE at 25.0 °C.

The ΔH_{HM} values were measured using at least two different standardized acid solutions and are reported as the average of at least four titrations and as many as eight. The heat of dilution of the acid in DCE (-0.2 kcal/mol)^{6a} was used to correct the reaction enthalpies.

RESULTS

Characterization of Reactants 1-7 and Protonated Products (1H+-7H+)

Complexes 1-7 are air-stable in the solid state and in solution. Protonations of 1-6 result in complexes that are stable in solution. Complex 7H⁺ is air-sensitive in solution, but is stable under a nitrogen atmosphere.

Complexes 1-3 have previously⁹ been assigned octahedral geometries with one phosphorus atom (PI) of the dppm ligand coordinated to the metal (eq 5) on the basis of their ¹H, ¹³C, ³¹P (¹H) NMR spectra. Since the ³¹P (¹H) NMR. ¹H NMR and IR spectra of 1-3 and 1H⁺-3H⁺ are very similar, only Mo(CO)₅(η^{1} dppm) (2) and its protonation will be discussed here. The doublet at -24.9 ppm in the ³¹P(¹H) NMR spectrum in 2 was assigned to P_{II} (eq 5) because the chemical shift is so similar to that (-23.4 ppm) of free dppm in CD₂Cl₂; the doublet at 28.1 ppm was therefore assigned to PI. The doublet of doublets for the methylene protons in the ¹H NMR spectrum also indicates inequivalent phosphorus atoms which is consistent with η^1 -coordination of the dppm ligand. Addition of 1 equiv of CF₃SO₃H to 2 results in protonation of the uncoordinated phosphorus atom (PII) as suggested by the $^{31}P{^{1}H}$ NMR resonance for PII moving downfield from -24.9 ppm to 6.8 ppm (br s); the resonance for P_I shifts only slightly downfield to 31.3 ppm (d, $^{2}J_{PP} = 9.2$ Hz). A broad singlet at 4.22 ppm is observed for the methylene protons in the ¹H NMR spectrum of $2H^+$. Since protonation of 2 does not occur at the metal, the v(CO) bands in the IR spectrum of 2H⁺ are the same as those of 2 within experimental error.

109

Cano et al.,^{10,11} used IR spectroscopy to establish the *fac-geometries* for complexes 4-6 (eq 6). Since the ³¹P{¹H} NMR, ¹H NMR and IR spectra of 4-6 and 4H⁺-6H⁺ are similar, only *fac*-Mo(CO)₃(η^2 -bipy)(η^1 -dppm) (4) and its protonated analog (4H⁺) will be described here. By comparison with the chemical shift in the ³¹P{¹H} NMR spectrum of free dppm (-23.4 ppm), the peak for 4 at -27.9 ppm is assigned to the dangling phosphorus atom (P_{II}) (eq 6); therefore, the peak at 47.2 ppm is assigned to P_I (eq 6). The doublet of doublets for the methylene protons in the ¹H NMR spectrum is also consistent with η^1 -coordination of dppm. Addition of 1 equiv of CF₃SO₃H to 4 results in protonation of the free phosphorus atom (P_{II}) as suggested by the ³¹P{¹H} resonance for P_{II} which shifts downfield from -27.9 ppm to 7.9 ppm upon protonation; the peak assigned to P_I shifts upfield from 47.2 ppm to 30.2 ppm. A broad singlet at 4.0 ppm is observed for the methylene protons in the ¹H NMR spectrum of 4H⁺. Since protonation occurs at P_{II} and not at the metal center, the v(CO) bands for 4 and 4H⁺ are the same.

The fac-geometry is assigned to $W(CO)_3(\eta^2-bipy)(PPh_2Me)$ (7) based on the three strong v(CO) bands in its IR spectrum; the frequencies of these bands are nearly identical to those previously reported for fac- $W(CO)_3(\eta^2-bipy)(PPh_3)$.¹³ In the ¹H NMR spectrum of 7, a doublet is observed at 1.52 ppm for the methyl group; addition of 1 equiv of CF₃SO₃H results in a downfield shift of the methyl resonance to 1.65 ppm and the appearance of a doublet at -3.0 ppm for the hydride. The IR spectrum of 7H⁺ has three v(CO) bands of approximately equal intensity. Since the complex

 $W(H)(CO)_3[CH_3C(CH_2PPh_2)_3]^+,^{14}$ which must have 3 mutually *cis* CO ligands as required by the phosphine ligand, was reported to have three v(CO) bands of approximately the same intensity, it is likely that **7H**⁺ also has three mutually *cis*-CO ligands as drawn in eq 7; details of the structure, such as the position of the hydride ligand, are not known.

Complexes 1H+-7H⁺ are deprotonated rapidly and quantitatively with 1 equiv of 1,3-diphenylguanidine in CH₂Cl₂ or DCE solvent to yield the original complexes 1-7, which are recovered by passing the solution through a short (~5 cm) neutral alumina column using CH₂Cl₂ as the eluent; the complexes are obtained by evaporating the solutions to dryness. Protonations of $Fe(CO)_4(\eta^{1}-dppm)^{15}$ and *fac*-Mo(CO)₃(η^{2} -bipy)(PPh₂Me)^{16} in CD₂Cl₂ with 1 equiv of CF₃SO₃H result in more than one product as indicated by IR, ¹H NMR and ³¹P(¹H) NMR spectroscopy; thus could not be measured in the calorimeter.

Calorimetric Studies

Heats of protonation (ΔH_{HP} and ΔH_{HM}) for complexes 1-7 as determined by titration calorimetry with CF₃SO₃H in 1,2-dichloroethane solution at 25.0 °C are listed in Table I. Plots of temperature vs. amount of acid added were linear, which indicates that the complexes are protonated rapidly and quantitatively. There was no decomposition of either the neutral or the protonated species during the titration as evidenced by the normal pre- and post-titration baseline slopes for 1-7.

The low dielectric constant $(\varepsilon=10.46)^{17}$ for DCE suggests that the protonated products occur as ion pairs. However, as discussed elsewhere,^{3,4,6} there is no evidence that ion-pairing or solvation energies determine trends in ΔH_{HP} or ΔH_{HM} . Thus, we attribute the differences in the ΔH_{HP} (and ΔH_{HM}) values to the properties of the reactant and product complexes.

Table I. Heats of Protonation (ΔH_{HP} and ΔH_{HM}) for M(CO)₅(η^{1} -dppm), fac-

$M(CO)_3(\eta^2 - N)$	\dot{N})(η^1 -dppm) and fac-W(CO) ₃ (η^2 -bipy)(PPh ₂ Me) Complexes
-----------------------	--

metal complex ^a	ΔH _{HP} , ^b kcal/mol	
Cr(CO) ₅ (η ¹ -dppm), 1	-17.1 (± 0.1)	
$Mo(CO)_5(\eta^{1}-dppm), 2$	-18.6 (± 0.1)	
W(CO) ₅ (η ¹ -dppm), 3	-19.1 (± 0.3)	
fac -Mo(CO) ₃ (η^2 -bipy)(η^1 -dppm), 4	-22.3 (± 0.2)	
fac -Mo(CO)3(η^2 -phen)(η^1 -dppm), 5	-23.0 (± 0.1)	
fac -W(CO) ₃ (η^2 -bipy)(η^1 -dppm), 6	-23.1 (± 0.1)	
fac -W(CO) ₃ (η^2 -bipy)(PPh ₂ Me), 7	-18.8 (± 0.2) ^c	
Ph ₂ PCH ₂ PPh ₂	-22.0 (± 0.1) ^d	
(H)Ph2PCH2PPh2+	-14.9 (± 0.2) ^e	

a Ligand abbreviations: $Ph_2PCH_2PPh_2$ (dppm), 2,2'-bipyridine (bipy), 1,10phenanthroline (phen).

^bFor protonation with $CF_3SO_3H(0.1 M)$ in DCE solvent at 25.0 °C. Errors are given as average deviations from the mean of at least 4 titrations.

 $^{\rm c}\!\Delta H_{\rm HM}$ for protonation at the tungsten with CF3SO3H (0.1 M) in DCE solvent at 25.0 °C.

 $^{d}\Delta H_{HP1}$ according to eq 3; reference 5.

 $e\Delta H_{HP2}$ according to eq 4; reference 5.

DISCUSSION

Effect of the M(CO)₅ Group (M = Cr, Mo, W) on the Basicity (ΔH_{HP} , eq 5) of the Dangling Phosphorus Atom (P_{II}) in M(CO)₅(η^1 -dppm)

As noted in the introduction, (H)Ph₂PCH₂PPh₂+CF₃SO₃· (Δ H_{HP2} = -14.9 kcal/mol, eq 4) is 7.1 kcal/mol less basic than $Ph_2PCH_2PPh_2$ ($\Delta H_{HP1} = -22.0$ kcal/mol, eq 3), which illustrates the strong electron-withdrawing effect of H⁺ through the methylene group in dppm on the basicity of the unprotonated phosphorus. The effect of the $M(CO)_5$ groups (M = Cr, Mo, W) is significantly less as determined by ΔH_{HP} (Table I) for the dangling phosphorus (PII) in the $M(CO)_5(\eta^1$ -dppm) complexes; these basicities increase in the order: $(H)Ph_2PCH_2PPh_2^+ (-14.9 \text{ kcal/mol}) < Cr(CO)_5(\eta^1-dppm) (-17.1 \text$ $Mo(CO)_5(\eta^{1}-dppm) (-18.6 \text{ kcal/mol}) < W(CO)_5(\eta^{1}-dppm) (-19.1 \text{ kcal/mol}) < 0.000 \text{ kcal/mol})$ $Ph_2PCH_2PPh_2$ (-22.0 kcal/mol). The order of $M(CO)_5(\eta^1-dppm)$ basicities (ΔH_{HP}) is not consistent with either the trend in the Pauling electronegativities, which increase in the order [Cr (1.66) < Mo (2.16) < W(2.36)] or the Allred-Rochow electronegativities [Cr (1.35) < Mo (1.24) < W(1.13)]:¹⁸ nor is it consistent with the electron affinities of the elements: Cr (65 kJ/mol < Mo (100 kJ/mol) > W (60 kJ/mol).¹⁹ It seems likely that the ΔH_{HP} values for $M(CO)_5(\eta^1$ -dppm) are a measure of the overall electronwithdrawing ability of the M(CO)₅ group, which is determined by σ - and π bonding between the metal and P_I. This trend suggests that either π -back bonding from the metal to the phosphorus increases in the order: Cr < Mo <W, or that the σ -accepting ability of the metal increases in the reverse order (W < Mo < Cr).

Effect of the M(CO)₃(η^2 -N N) Group (M = Mo, W) on the Basicity (Δ H_{HP}, eq 6) of the Dangling Phosphorus atom (P_{II}) in *fac*-M(CO)₃(η^2 -N N)(η^1 -dppm)

The basicity of PII in W(CO)₅(η^{1} -dppm) (Δ HHP = -19.1 kcal/mol) increases by 4.0 kcal/mol when two of the CO ligands are replaced by a bipy ligand to give fac-W(CO)₃(η^2 -bipy)(η^1 -dppm) (Δ H_{HP} = -23.1 kcal/mol). When two CO ligands in Mo(CO)₅(η^1 -dppm) ($\Delta H_{HP} = -18.6$ kcal/mol) are substituted by bipy $(pK_{e1} = 4.44)^{20}$ to give fac-Mo(CO)₃(η^2 -bipy)(η^1 -dppm) ($\Delta H_{HP} = -22.3$ kcal/mol) or by the more basic phen ligand $(pK_{a1} = 4.84)^{20}$ to give fac-Mo(CO)₃(η^2 -phen)(η^1 -dppm) (ΔH_{HP} = -23.0 kcal/mol), the basicity (ΔH_{HP}) of the dangling phosphorus atom (P11) increases by 3.7 and 4.4 kcal/mol. respectively. Thus, replacement of two CO ligands in $M(CO)_5(\eta^1$ -dppm) (M = Mo, W) by bipy or phen $(N \ N)$ to give fac-Mo(CO)₃ $(N \ N)(\eta^{1}-dppm)$ (4, 5, 6) increases the basicity of the dangling phosphorus atom (PII) by 3.7-4.4 kcal/mol. As observed for the $M(CO)_5(\eta^1$ -dppm) complexes, the tungsten derivative $M(CO)_3(\eta^2$ -bipy)(η^1 -dppm) is more basic (by 0.8 kcal/mol) than the Mo analog. Summarizing results for dppm and its complexes (1-6), the following order of increasing basicity (ΔH_{HP}) of the dangling phosphorus atom (P_{II}) is observed: (H)Ph₂PCH₂PPh₂+ (-14.9 kcal/mol) < $Cr(CO)_5(\eta^1$ -dppm) (-17.1 $kcal/mol) < M_0(CO)_5(\eta^2-dppm) (-18.6 kcal/mol) < W(CO)_5(\eta^1-dppm) (-19.1)$ kcal/mol < Ph₂P(CH₂)PPh₂ (-22.0 kcal/mol) $\leq fac$ -M₀(CO)₃(η^2 -bipy)(η^1 -dppm) (-22.3 kcal/mol) < fac-Mo(CO)₃(η^2 -phen)(η^1 -dppm) (-23.0 kcal/mol) $\approx fac$ - $W(CO)_3(\eta^2-bipy)(\eta^1-dppm)$ (-23.1 kcal/mol). Of particular interest is the result that fac-W(CO)₃(η^2 -bipy)(η^1 -dppm) ($\Delta H_{HP} = -23.1 \text{ kcal/mol}$) is 1.1 kcal/mol more basic than $Ph_2PCH_2PPh_2$ itself ($\Delta H_{HP1} = -22.0$ kcal/mol). Similarly, facMo(CO)₃(η^2 -phen)(η^1 -dppm) ($\Delta H_{HP1} = -23.0$ kcal/mol) is more basic than dppm. A simple Lewis acid-base σ -bond between the metal and phosphorus would require that P_I donate some electron density to the metal which would make P_{II} less basic than dppm itself. These results therefore suggest that the M(CO)₃(\hat{N} N) groups actually donate electron-density to the dppm ligand. This donation would presumably occur by π -back-bonding from the metal to P_I.

Based on these results, the effect of coordinating P_B (Chart I) on the donor ability of P_A in a dppm chelate complex can vary from decreasing the donor ability of P_A by 4.9 kcal/mol (in $Cr(CO)_5(\eta^1-dppm)$) to actually increasing its donor ability by 1.1 kcal/mol (in *fac*-W(CO)_3(\eta^2-bipy)(\eta^1-dppm)) depending on the metal and its other ligands.

Comparison of the Basicities (ΔH_{HM} and ΔH_{HP}) of fac-W(CO)₃(η^2 -bipy)(PPh₂Me) and fac-W(CO)₃(η^2 -bipy)(η^1 -dppm).

In order to estimate the basicity of the metal in fac-W(CO)₃(η^2 -bipy)(η^1 dppm) (6), the Δ H_{HM} of the analogous complex, fac-W(CO)₃(η^2 -bipy)(PPh₂Me), (7), without a dangling phosphorus, was determined (eq 7). Its basicity (Δ H_{HM} = -18.8 kcal/mol) is probably somewhat higher than that of tungsten in 6 because PPh₂Me (Δ H_{HP1} -24.7 kcal/mol) is a better donor than dppm (Δ H_{HP1} = -22.0 kcal/mol). However, assuming that Δ H_{HM} of 7 is a high estimate for the basicity of the metal in 6, the dangling P_{II} in 6 is at least 4.3 kcal/mol more basic than the tungsten atom. This difference in basicities (4.3 kcal/mol) of these two sites can be expressed in the form of the equilibrium constant (K_{eq}) for reaction (8). Assuming that Δ S^o is zero for this reaction, which means

$$7 + 6H^+ \qquad \frac{K_{eq}}{2} \qquad 7H^+ + 6 \qquad (8)$$

that ΔG° is 4.3 kcal/mol, K_{eq} is calculated ($\Delta G^{\circ} = -RTlnK_{eq}$) to be 1.4 x 10³. This large value accounts for the observation that *fac*-W(CO)₃(η^{2} -bipy)(η^{1} -dppm) is protonated at the dangling phosphorus (P_{II}) rather than at the metal.

Comparison of the Basicities (ΔH_{HM}) of fac-W(CO)₃(η^2 -bipy)(PPh₂Me) and fac-W(CO)₃(PPh₂Me)₃

The substitution of two PPh₂Me ligands in *fac*-W(CO)₃(PPh₂Me)₃ (Δ H_{HM} = -15.1 kcal/mol) by a bipy ligand to give *fac*-W(CO)₃(η^2 -bipy)(PPh₂Me) (Δ H_{HM} = -18.8 kcal/mol) results in a 3.7 kcal/mol increase in the basicity of the metal. That the bipy complex 7 is more basic than *fac*-W(CO)₃(PPh₂Me)₃ is somewhat surprising since bipy ($pK_a = 4.44$)²⁰ is less basic than PPh₂Me ($pK_a = 4.59$). In previous studies of metal phosphine complexes,^{5,6} we have noted linear correlations between metal complex basicity (Δ H_{HM}) and the basicities of the phosphine ligands as measured by Δ H_{HP}. If the pK_a of bipy is converted to Δ H_{HN} for protonation with CF₃SO₃H in DCE at 25.0 °C using a correlation

$$-\Delta H_{\rm HN} = 1.64 \, {\rm pK_a} + 21.0; \, {\rm in \ kcal/mol}$$
 (9)

(eq 9) of pK_a with ΔH_{HN} for other nitrogen bases,³ bipy ($\Delta H_{HN} = -28.3$ kcal/mol) is more basic than PPh₂Me whose ΔH_{HP} is -24.7 kcal/mol. Thus, using ΔH_{HN} and ΔH_{HP} as measures of the donor abilities of bipy and PPh₂Me allows one to account for the higher basicity of the metal in fac-W(CO)₃(η^2 -bipy)(PPh₂Me) as compared with that of fac-W(CO)₃(PPh₂Me)₃.

•

CONCLUSIONS

The basicity (ΔH_{HP}) of the dangling phosphorus (P_{II}) in Ph₂PCH₂PPh₂ (dppm) and its η^1 -coordinated complexes increases in the order: dppmH⁺ < Cr(CO)₅(η^1 -dppm), 1 < Mo(CO)₅(η^1 -dppm), 2 < W(CO)₅(η^1 -dppm), 3 < dppm \leq *fac*-Mo(CO)₃(η^2 -bipy)(η^1 -dppm), 4 < *fac*-Mo(CO)₃(η^2 -phen)(η^1 -dppm), 5 ~ *fac*-W(CO)₃(η^2 -bipy)(η^1 -dppm), 6. The proton (H⁺) reduces the basicity of P_{II} more than any of the metal complexes. In fact, the basicity of the dangling phosphorus in 5 and 6 is actually higher than that of dppm itself, which indicates that the W(CO)₃(η^2 -bipy) group is a net electron donor to the dppm, perhaps via π -back-bonding from the metal to the phosphorus. It is not surprising that 6 is protonated at the dangling phosphorus rather than at the tungsten since the metal, as estimated by the ΔH_{HM} for W(CO)₃(η^2 bipy)(PPh₂Me) 7, is at least 4.3 kcal/mol less basic than the phosphorus in 6. The basicity of the metal in 7 is higher than that in *fac*-W(CO)₃(PPh₂Me)₃ which is consistent with the donor abilities of the bipy and PPh₂Me ligands.

ACKNOWLEDGMENT

We thank the National Science Foundation (Grant CHE-9103948) for support of this work. We are also grateful to Diana Mayer, an Ames Laboratory (DOE) Summer Research Fellow, for exploratory studies on this project.

REFERENCES

- (a) McAuliffe, C. A. in Comprehensive Coordination Chemistry;
 Wilkinson, G.; Gillard, R. D.; McCleverty, J. A., Eds; Pergamon: New York, 1987; Vol. 2 p 989. (b) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, 2nd ed.; University Science Books: Mill Valley, CA, 1987.
 (c) Homogeneous Catalysis with Metal Phosphine Complexes; Pignolet, L. H., Ed.; Plenum: New York, 1983. (d) McAuliffe, C. A.; Levason, W. Phosphine, Arsine, and Stibine Complexes of the Transition Elements; Elsevier: New York, 1979.
- Sowa, Jr., J. R.; Zanotti, V.; Facchin, G.; Angelici, R. J. J. Am. Chem.
 Soc. 1992, 114, 160.
- (3) Sowa, Jr., J. R.; Bonanno, J. B.; Zanotti, V.; Angelici, R. J. Inorg.
 Chem. 1992, 31, 1370.
- (4) Rottink, M. K.; Angelici, R. J., manuscript in preparation.
- (5) Sowa, Jr., J. R.; Angelici, R. J. Inorg. Chem. 1991, 30, 3534.
- (6) (a) Sowa, Jr., J. R.; Zanotti, V.; Facchin, G.; Angelici, R. J. J. Am.
 Chem. Soc. 1991, 113, 9185. (b) Sowa, Jr., J. R.; Zanotti, V.; Angelici, R.
 J. Inorg. Chem., accepted for publication.
- (7) Bush, R. C.; Angelici, R. J. Inorg. Chem. 1988, 27, 681.
- (8) Stiddard, M. H. B. J. Chem. Soc. A. 1962, 4712.
- (9) Chan, D.; Hor, T. S. A.; Chiam, C. S. M., Chong, T. C. J. Thermal Anal. 1987, 32, 1115.

- (10) Cano, M.; Campo, J. A.; Pérez-Garcia, V.; Gutierrez-Puebla, E. J.
 Organomet. Chem. 1990, 382, 397.
- (11) Cano, M.; Campo, J. A.; Overjero, P.; Heras, J. V. J. Organomet.
 Chem. 1990, 396, 49.
- (12) Shi, Y.-L. Gao, Y.-C.; Shi, Q.-Z.; Kershner, D. L.; Basolo, F. Organometallics 1987, 6, 1528.
- (13) Dalton, J.; Paul, I.; Smith, J. G.; Stone, F. G. A. J. Chem. Soc. A. 1968, 1208.
- (14) Zanotti, V.; Rutar, V.; Angelici, R. J. J. Organomet. Chem. 1991, 414, 177.
- (15) Braunstein, P.; Richert, J.-L.; Dusausoy, Y. J. Chem. Soc. Dalton Trans. 1990, 3801.
- (16) Prepared exactly like fac-Mo(CO)₃(η^2 -bipy)(η^1 -dppm), ref 10.
- (17) Lange's Handbook of Chemistry, 13th ed.; Dean, J. A., Ed.; McGraw-Hill: New York, 1985.
- (18) (a) Huheey, J. E.; Inorganic Chemistry, 3rd ed.; Harper & Row: New York, 1983, p. 146. (b) Allred, A. L. J. Inorg. Nucl. Chem. 1961, 17, 215.
- (19) Hotop, H.; Lineberger, W. C. J. Phys. Chem. Ref. Data 1975, 4, 539.
- (20) Perrin, D. D. Dissociation Constants of Organic Bases in Aqueous Solution; Butterworth: London, 1972.

SUMMARY

This research has shown that the basicity (ΔH_{HM}) of a transition metal complex can be systematically controlled by altering the ligands and/or the metal. In general, the basicities of the metals are increased as the basicities of the phosphine ligands are increased. The $CpOs(PPh_3)_2X$ (X = I, Br, Cl, H) system, the basicities of the metals increase as the gas phase proton affinities of the X ligands increase. The Cp* ligand increases the basicity (ΔH_{HM}) of complex by 5.5 - 9.0 kcal/mol more than those with the Cp ligand, and Os complexes are 6.0 - 8.5 kcal/mol more basic than the analogous Ru complexes. By comparison of (H)₄Os(PR₃)₃ vs (H)₂Os(PR₃)₄ and CpIr(PPh₃)(H)₂ vs CpIr(PPh3)(CO) complexes, it has been established that the basicity (H_{HM}) of the metal increases with its isoelectronic ligands in the order: $(H)_2 < CO <$ **PR3.** The basicity (ΔH_{HM}) of the dangling phosphorus atom in $L_n M(\eta^1 - dppm)$ complexes was found to be decreased more by H+ (i.e., (H)Ph2PCH2PPh2+) than M(CO)₅ (M = Cr, Mo, W), while Mo(CO)₃(η^2 -phen) and W(CO)₃(η^2 -bipy) actually enhance the basicity of the dangling phosphorus more than free dppm.

GENERAL REFERENCES

- (a) Lowry, T. H.; Richardson, K. S. Mechanism and Theory in Organic Chemistry, 2nd ed.; Harper & Row: New York, 1981; Chapter 3. (b) March, J. Advanced Organic Chemistry, 2nd ed.; McGraw Hill: New York, 1977; Chapter 8.
- (2) Carey, F. A.; Sunberg, R. J. Advanced Organic Chemistry, Part B, 3rd, ed.; Plenum: New York, 1990.
- (3) (a) Finston, H. L.; Rychtman, A. C. A New View of Current Acid-Base Theories; Wiley: New York, 1982. (b)Matthews, W. S.; Bares, J. E.; Bartmess, J. E.; Bordwell, F. G.; Bonforth, F. J.; Drucher, G. E.; Margolin, R. J.; McCallum, R. J.; McCollum, G. J.; Vanier, N. R. J. Am. Chem. Soc. 1975, 97, 7006.
- (4) (a) Arnett, E. M.; Mitchell, E. J.; Murty, T. S. S. R. J. Am. Chem. Soc. 1974, 96, 3875. (b) Arnett, E. M.; Quirk, R. P.; Burke, J. J. J. Am. Chem. Soc. 1970, 92, 1260. (c) Arnett, E. M. J. Am. Chem. Soc. 1975, 97, 3262. (d) Arnett, E. M.; Quirk, R. P.; Larsen, J. W. J. Am. Chem. Soc. 1970, 92, 3977. (e) Arnett, E. M. J. Am. Chem. Soc. 1973, 95, 979. (f) Arnett, E. M.; Small, L. E. J. Am. Chem. Soc. 1991, 113, 7069.
- (5) (a) Arnett, E. M.; Small, L. E. J. Am. Chem. Soc. 1977, 93, 808. (b)
 Arnett, E. M.; Venkatasubramaniam, K. G. J. Org. Chem. 1983, 48, 1569. (c) Arnett, E. M.; Moriarity, T. C.; Small, L. E.; Rudolph, J. P.; Quirk, R. P. J. Am. Chem. Soc. 1973, 95, 1492.
- (6) Bartmess, J. E.; Scott, J. A.; McIver, R. T., Jr. J. Am. Chem. Soc. 1979, 101, 6046.